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Randomized collective choices based on a fractional
tournament

Yves Sprumont
Department of Economics, Deakin University

An extension rule assigns to each fractional tournament x (specifying, for every
pair of social alternatives a and b, the proportion xab of voters who prefer a to b) a
random choice function y (specifying a collective choice probability distribution
for each subset of alternatives), which chooses a from {a, b} with probability xab.

There exist multiple neutral and stochastically rationalizable extension rules.
Both linearity (requiring that y be an affine function of x) and independence of ir-
relevant comparisons (asking that the probability distribution on a subset of alter-
natives depend only on the restriction of the fractional tournament to that subset)
are incompatible with very weak properties implied by stochastic rationalizability.

We identify a class of maximal domains, which we call sequentially binary, guar-
anteeing that every fractional tournament arising from a population of voters with
preferences in such a domain has a unique admissible stochastically rationaliz-
able extension.
Keywords. Voting, fractional tournament, random choice, stochastic rationaliz-
ability.

JEL classification. D70.

1. Introduction

Randomizing collective decisions helps reconcile fairness and rationality. The random
dictatorship mechanism treats all participating individuals equally and produces collec-
tive choices that are rationalizable in the sense of the random utility model pioneered by
Block and Marschak (1960). Moreover, as Barberà and Sonnenschein (1978) and McLen-
nan (1980) point out, the probability of selecting an alternative a from a pair {a, b} only
depends on the restriction of the preference profile to that pair of alternatives.1

Applying the random dictatorship mechanism, however, requires to know the dis-
tribution of preferences in the population. In practice, voters are often asked to cast
secret ballots on binary choice problems. In such cases, the information available to the
collective decision maker takes the form of a fractional tournament giving, for any alter-
natives a and b, the proportion xab of voters who support a against b. This is more infor-
mative than a majority tournament (recording only whether or not a majority supports
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a against b) but less informative than a preference distribution. Based on the fractional
tournament x, what randomized choice behavior should the collective decision maker
adopt?2

If the choice is between a and b, she should arguably respect x and pick a with prob-
ability xab.3 But what are the appropriate randomized choices from larger agendas? An-
swering that question amounts to constructing an extension rule that transforms x into
a collective random choice function y. The subject of this paper is the axiomatic analysis
of such rules.

The central axiom we are interested in stipulates that y should be (stochastically)
rationalizable. In contrast to the deterministic setup where the majority tournament
arising from a population of rational voters cannot generally be extended to a deter-
ministic rational choice function, stochastic rationalizability is feasible. But because
the distribution of preferences generating x cannot generally be recovered uniquely, x
admits several stochastically rationalizable extensions; see Section 3. This multiplicity
problem can be handled in two ways. One consists in imposing axioms that comple-
ment stochastic rationalizability, the other is to identify domain conditions under which
x does possess a unique stochastically rationalizable extension.

Section 4 follows the first route. We start with the basic axiom of neutrality and show
that there exist multiple neutral and stochastically rationalizable extension rules. See
Theorem 1 and the Appendix.

Several other natural axioms are incompatible with very weak properties implied by
stochastic rationalizability. Linearity (requiring that y be an affine function of x) con-
flicts with the requirement that y be rationalizable when x is generated by a population
of unanimous voters. This incompatibility persists if linearity is replaced with the re-
lated property of betweenness preservation (asking that the extension of a fractional
tournament x′′ that is between x and x′ should be between the extensions of x and x′);
see Theorem 2.

Next, the important axiom of independence of irrelevant comparisons (asking that
the probability distribution recommended by y on a subset of alternatives be deter-
mined by the restriction of x to that subset) is incompatible with agenda monotonic-
ity (requiring that the probability of selecting an alternative does not increase when the
agenda expands); see Theorem 3.

Section 5 follows the second route. We study a class of preference domains that we
call sequentially binary. Each ordering in such a domain is constructed from bottom to
top through a sequence of m − 1 binary choices, where m denotes the number of alter-
natives. The first choice determines which of two exogenously specified alternatives is
the worst alternative in the ordering. The second binary choice (which depends upon
the outcome of the first) determines the second-worst alternative, and so on. There are
restrictions tying the successive choices, which will be explained in Section 5.

2In practice, the number xab may be known only for some pairs (a, b). Dealing with incomplete fractional
tournaments is beyond the scope of this paper.

3Note that this is indeed the outcome of the random dictatorship mechanism for any distribution of
preferences generating x.
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Although a fractional tournament x may be generated by several probability distri-
butions on a given sequentially binary domain, it turns out that all such distributions
generate the same random choice function. This implies that there is a unique admis-
sible extension rule on the set of fractional tournaments generated by preferences in a
sequentially binary domain; see Theorem 4 and its corollary. Theorem 5 states that this
rule satisfies linearity and independence of irrelevant comparisons.

2. Extension rules

Given a finite set A ⊆ N = {1, 2, � � �} containing m ≥ 2 alternatives, let BA = {(a, b) ∈ A×
A|a �= b}, and let

X = {
x ∈ [0, 1]BA|x(a, b) + x(b, a) = 1 for all (a, b) ∈ BA

}
.

For every (a, b) ∈ BA, we write x(a, b) as xab and interpret this number as the propor-
tion of voters who prefer alternative a to b. A point x = (xab )(a,b)∈BA

∈ X is a fractional
tournament (on A).

We restrict our attention to the fractional tournaments that are generated by a pop-
ulation of rational voters. Formally, let P denote the set of (linear) preference orderings4

on A and let �(P ) = {α ∈ [0, 1]P |
∑

P∈Pα(P ) = 1} denote the set of probability distribu-
tions on P . The fractional tournament x∗(α) generated by α ∈ �(P ) is defined by

x∗
ab(α) =

∑
P∈P :aPb

α(P ) (1)

for all (a, b) ∈ BA. We call a fractional tournament x ∈ X rationalizable if x = x∗(α) for
some α ∈ �(P ). We denote by X∗ the set of rationalizable fractional tournaments (on
A). Identifying the distribution putting probability one on a single ordering P with P

itself, x∗(P ) denotes the (degenerate) rationalizable fractional tournament

x∗
ab(P ) =

{
1 if aPb,

0 otherwise.

Since x∗(P ) is generated by a population of voters having the same preference, we call it
a unanimous tournament. By definition,

x∗(α) =
∑
P∈P

α(P )x∗(P ).

Thus, X∗ = co{x∗(P )|P ∈ P }: the rationalizable fractional tournaments form the convex
hull of the unanimous tournaments.

4A linear ordering on A is a binary relation P ⊆ A×A that is complete (for all distinct a, b ∈ A, (a, b) ∈ P

or (b, a) ∈ P), asymmetric (for all a, b ∈ A, (a, b) ∈ P ⇒ (b, a) /∈ P), and transitive (for all a, b, c ∈ A, [(a, b) ∈
P and (b, c) ∈ P] ⇒ (a, c) ∈ P). Our use of the term “linear ordering” is slightly nonstandard. In particular,
P is irreflexive (for all a ∈ A, (a, a) /∈ P).
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For m= 3, X∗ consists of all x ∈X such that 1 ≤ x12 + x23 + x31 ≤ 2. In general, X∗ is
a convex polytope of dimension m(m− 1)/2.5

Let SA = {B ⊆ A||B| ≥ 2}. For each agenda B ∈ SA, let �(B) = {yB ∈ [0, 1]B|∑
a∈B yaB = 1} be the set of probability distributions on B, and let

Y =
∏

B∈SA

�(B).

A point y = (yB )B∈SA
∈ Y is a random choice function (on A). For each B ∈ SA and a ∈ B,

the number yaB is the probability with which society chooses a when the set of feasible
alternatives is B.

A random choice function y ∈ Y extends (or is an extension of) a rationalizable frac-
tional tournament x ∈ X∗ if ya{a,b} = xab for all (a, b) ∈ BA. An extension rule is a function
f : X∗ → Y such that f (x) extends x for every x ∈X∗.

An extension rule is a mathematical object that formally describes a particular type
of collective decision mechanism. We submit that (i) the input of a collective decision
mechanism is often adequately described by a rationalizable fractional tournament x,
and (ii) a random choice function y extending x may be a sensible output of a collective
decision mechanism.

(i) From a positive viewpoint, modeling the input of a collective choice mechanism
as a fractional tournament makes sense because real-life procedures often request vot-
ers to secretly express their opinion on binary agendas. The restriction to binary agen-
das may stem from the concern that voters might find it difficult to elicit their preference
ranking over larger agendas, and from the resulting willingness to submit a simple ques-
tion to the popular vote. Secrecy may reflect an effort to avoid attempts by some voters
to influence the vote of others. Whatever the reasons for using a secret binary protocol
are, the information revealed by such a protocol is very close to a fractional tournament.
The collective decision maker knows, for each pair of alternatives {a, b} submitted to the
voters, the number of those who prefer a to b, the number of those who prefer b to a,
and the number of those who did not express a valid preference.

Admittedly, this is not quite a fractional tournament. On the one hand, by restricting
attention to the proportion of valid ballots in favor of each alternative in the pair {a, b},
a fractional tournament ignores the (arguably irrelevant) size of the electorate and the
(possibly relevant) fraction of voters who did not submit a valid ballot. On the other
hand, a fractional tournament assumes that voters are consulted on all pairs of alterna-
tives, which is not the case in practice. We view the analysis of extension rules as a step
in the analysis of secret binary protocols.

There is a sizable literature on what Fishburn (1977) dubs C2 (or pairwise) social
choice functions. These are decision mechanisms, which require more information than
the majority relation generated by the voters’ preference profile, yet only use the ma-
trix p = (pab )(a,b)∈BA

generated by that profile, where pab is the number of voters who

5For any m, it is easy to see that x ∈ X∗ only if 1 ≤ xab + xbc + xca ≤ 2 for all distinct a, b, c ∈ A. Dridi
(1980) proved that these triangle inequalities imply x ∈ X∗ when m ≤ 5, but not when m > 5. Identifying
a minimal set of linear inequalities guaranteeing that a fractional tournament is rationalizable remains an
open problem for m> 6; see Fishburn (1992) and Martí and Reinelt (2011).
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prefer a to b. Compared to p, the fractional tournament x is a slightly less informative
summary of the voters’ preference profile that ignores the total number of voters.6

The foregoing discussion vindicates our interest in fractional tournaments. The ra-
tionalizable ones arise if voters’ preferences are assumed to be linear orderings over the
set of alternatives. This rationality assumption is central in deterministic social choice
theory. Indeed, a fundamental insight of the theory is that a deterministic mechanism
taking into account the diverse preferences of rational individuals cannot produce ra-
tionalizable collective decisions. We maintain the individual rationality assumption be-
cause we wish to examine to what extent the tension between representativeness and
collective rationality persists when collective choices can be randomized. As we shall
see, stochastic collective rationalizability is achievable.

(ii) This brings us to the issue of modeling the output of collective decision mech-
anisms. As suggested in the previous paragraph, our motivation for studying random
choice functions that extend a rationalizable fractional tournament is normative.

It is generally impossible to derive a satisfactory deterministic choice function from
a rationalizable fractional tournament because of the possibility of Condorcet cycles: if
two-thirds of the voters prefer alternative 1 to alternative 2, two-thirds prefer 2 to 3, and
two-thirds prefer 3 to 1, there is no neutral and anonymous way of selecting a single
alternative from the set {1, 2, 3}. Randomized collective choices are therefore necessary
to ensure impartiality; see Fishburn (1984) and Brandl, Brandt, and Seedig (2016) for a
more detailed discussion.

The study of randomized collective choice mechanisms is not new. Zeckhauser
(1969) was the first to formalize them as mappings from preference profiles to lotteries
over the (fixed) set of alternatives. Some of these mechanisms only use the informa-
tion contained in the associated matrix of majority margins: an important example are
the mechanisms selecting a maximal lottery, namely one that is weakly preferred to ev-
ery other by an expected majority of voters; see Kreweras (1965), Fishburn (1984), and
Brandl, Brandt, and Seedig (2016).

Randomization, however, is generally regarded as a necessary evil: its only purpose
is the impartial resolution of ties. The current paper takes the view that lotteries are also
useful as a tool to reflect the diversity of voters’ opinions and avoid the “tyranny of the
majority.” This motivates our search for an extension of the fractional tournament gen-
erated by the voters’ preferences: even if a majority prefers alternative 1 to alternative 2,
it may make sense to choose 2 with a probability equal to the proportion of voters who
prefer 2 to 1.

Extension rules have not received much attention in the literature. The only example
we are aware of is the proportional Borda rule mentioned by Brandt (2017), which selects

6The matrix of majority margins q = (qab )(a,b)∈BA
:= (pab −pba )(a,b)∈BA

is a weighted tournament, i.e., a
point q ∈ NBA such that qab + qba = 0 for all distinct a, b ∈ A. Debord (1987) shows that if all components
qab of a weighted tournament q have the same parity, there is a profile of linear preference orderings whose
matrix of majority margins coincides with q. Recent work on weighted tournaments and pairwise social
choice functions includes De Donder, Le Breton, and Truchon (2000) and Fischer, Hudry, and Niedermeier
(2016).
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alternative a from agenda B with a probability equal to a’s Borda score relative to B. It
can be computed from the fractional tournament x generated by the voters’ preferences:

fBorda
aB (x) =

∑
c∈B\a

xac∑
b∈B

∑
c∈B\b

xbc
=

∑
c∈B\a

xac(
|B|
2

)

for all B ∈ SA and a ∈ B.7 As we shall see in the next section, this random choice function
is not stochastically rationalizable in the sense usually given to that term.

3. Stochastic rationalizability

Over 60 years ago, Block and Marschak (1960) formulated a stochastic generalization
of the notion of rationality known in mathematical psychology as the random utility
model. The model spurred enormous interest and constitutes today the conventional
interpretation of stochastic rationalizability. Luce and Suppes (1965) is a classic intro-
duction to the literature. A random choice function is (stochastically) rationalizable if it
maximizes a randomly selected ordering: there exists a probability distribution α over
the set of linear orderings on A such that the probability of choosing alternative a from
an agenda B coincides with the probability of drawing at random (according to the dis-
tribution α) a linear ordering whose best alternative in B is a.

Formally, the random choice function y∗(α) ∈ Y generated by α ∈ �(P ) is given by

y∗
aB(α) =

∑
P∈P :aPb for all b∈B\{a}

α(P ) (2)

for all B ∈ SA and a ∈ B. A random choice function y ∈ Y is (stochastically) rationalizable
if y = y∗(α) for some α ∈ �(P ). We let Y ∗ denote the set of (stochastically) rationalizable
random choice functions. Identifying the distribution putting probability one on P with
P itself, y∗(P ) denotes the random choice function which selects the best feasible alter-
native according to P with probability one:

y∗
aB(P ) =

{
1 if aPb for all b ∈ B \ {a},

0 otherwise.

Using this notation,

y∗(α) =
∑
P∈P

α(P )y∗(P ).

The random choice function y∗(α) can be interpreted as a “random dictatorship” maxi-
mizing each preference P with probability α(P ).

7Brandt (2017) considers fixed-agenda mechanisms, i.e., functions mapping each fractional tournament

to a probability distribution over the set A. The rule fBorda is a variable-agenda version of the mechanism
he describes.
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Throughout this paper, we focus on extension rules that produce rationalizable ran-
dom choice functions.

Stochastic rationalizability f (X∗ ) ⊆ Y ∗.
Recall that X∗ stands for the set of rationalizable fractional tournaments. The above

axiom thus stipulates that deterministic rationality at the voters’ level should translate
into stochastic rationalizability at the collective level. Our insistence on collective ra-
tionalizability follows the Arrovian tradition. It is motivated by the view that, to ensure
the continuing participation of rational voters, collective decisions should be reason-
ably consistent across agendas. For instance, the probability of choosing an alternative
should not increase when the agenda expands. Stochastic rationalizability guarantees
several such consistency properties; in fact, it is uniquely characterized by a collection
of consistency properties identified by Falmagne (1978).

Stochastic rationalizability is not an innocuous requirement. The proportional
Borda rule, for instance, violates it. To see why, suppose A = {1, 2, 3} and write an or-
dering by listing (without commas) the alternatives from best to worst: for instance, 123
denotes the ordering P = {(1, 2), (2, 3), (1, 3)}. The only stochastically rationalizable ex-
tension of the unanimous tournament x∗(123) is the degenerate random choice func-
tion y∗(123). From the set A, this random choice function picks 1 with probability 1. By
contrast, the Borda random choice function fBorda(x∗(123)) picks 1 with probability 2/3
and 2 with probability 1/3.

Yet, stochastic rationalizability is feasible. Indeed, any probability distribution gen-
erating a given fractional tournament also generates a stochastically rationalizable ex-
tension of it: for any x ∈ X∗ and any α ∈ �(P ) such that x = x∗(α), the random choice
function y∗(α) is a stochastically rationalizable extension of x.

The central difficulty is that different probability distributions generating the same
fractional tournament may generate different random choice functions. As an illustra-
tion, suppose A = {1, 2, 3} and recall from Footnote 5 that X∗ can be identified with the
set of all x = (x12, x23, x31 ) ∈ [0, 1]3 such that 1 ≤ x12 +x23 +x31 ≤ 2. Using this notation,
the fractional tournament x= ( 1

2 , 1
2 , 1

2 ) ∈X∗ can be written as

x= 1
2

(1, 1, 0) + 1
2

(0, 0, 1) = 1
2
x∗(123) + 1

2
x∗(321) (3)

or

x= 1
2

(1, 0, 0) + 1
2

(0, 1, 1) = 1
2
x∗(132) + 1

2
x∗(231). (4)

Under the first decomposition, x is generated by a population α in which one-half of the
voters have preference 123 and the other half have the opposite preference 321. Un-
der the second decomposition, x is generated by a population α′ in which one-half
of the voters have preference 132 and the other half have preference 231. Although
x∗(α) = x∗(α′ ) = x, the random choice functions y∗(α), y∗(α′ ) generated by the two
distributions α, α′ differ. The random choice function y∗(α) = 1

2y
∗(123) + 1

2y
∗(321)

chooses alternatives 1 and 3 from the set {1, 2, 3} with probability 1/2 each whereas
y∗(α′ ) = 1

2y
∗(132) + 1

2y
∗(231) picks alternatives 1 and 2 with probability 1/2 each.
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The multiplicity of stochastically rationalizable extensions is the rule rather than an
exception. When m = 3, x ∈ X∗ has several stochastically rationalizable extensions if
and only if x belongs to the interior of X∗. To see why, check first that any interior x

can be generated by different distributions: there exist α, α′ ∈ �(P ), α �= α′, such that
x = x∗(α) = x∗(α′ ). Since the random utility model is identified when there are only
three alternatives (Block and Marschak (1960)), y∗(α) �= y∗(α′ ). But both y∗(α) and y∗(α′ )
extend x. Conversely, any x not in the interior ofX∗ is generated by a unique distribution
and possesses a unique stochastically rationalizable extension.

4. Results

Stochastic rationalizability is a property of the random choice function y associated with
a given fractional tournament x. We now explore the possibility of combining stochastic
rationalizability with restrictions on how y changes with x.

4.1 Neutral extension rules

The axiom of neutrality requires that all alternatives be treated equally. Formally, let �
denote the set of bijections from A to itself. For every π ∈ �, x ∈ X∗, and y ∈ Y ∗, define
xπ ∈X by

xππ(a)π(b) = xab for all (a, b) ∈ BA,

and define yπ ∈ Y by(
yπ

)
π(a)π(B) = yaB for all B ∈ SA and all a ∈ B.

Observe that xπ ∈X∗ and yπ ∈ Y ∗.
Neutrality For all x ∈X∗ and π ∈�, f (xπ ) = (f (x))π .

Theorem 1. There exists an extension rule satisfying stochastic rationalizability and
neutrality.

Proof. For any x ∈ X∗, define a carrier of x to be an inclusion-minimal set D ⊆ P such
that x ∈ co{x∗(P )|P ∈ D}. By minimality, the points x∗(P )(P ∈ D) are affinely indepen-
dent8 and there exists a unique collection of strictly positive weights αD(P )(P ∈ D) sum-
ming up to one such that

x =
∑
P∈D

αD(P )x∗(P ).

The random choice function

fD(x) =
∑
P∈D

αD(P )y∗(P )

8By definition, x∗(P ) ∈ {0, 1}BA for each P ∈ P . A collection of points x1, � � � , xK ∈ {0, 1}BA are affinely

independent if [
∑K

k=1 αkx
k = 0 and

∑K
k=1 αk = 0] ⇒ [α1 = · · · = αK = 0].
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is a stochastically rationalizable extension of x. Let Dx denote the set of carriers of x and
define

f (x) = 1
|Dx|

∑
D∈Dx

fD(x).

The extension rule f : X∗ → Y satisfies stochastic rationalizability and neutrality.

There exist other stochastically rationalizable and neutral extension rules than the
rule f defined in the proof above. For each x ∈X∗, define �x = {α ∈ �(P )|x = x∗(α)} and
call the elements of �x decompositions of x: these are the probability distributions that
generate x. The set �x is a convex polytope included in �(P ). Its extreme points are the
decompositions whose support is a carrier of x, i.e., �x = co{αD|D ∈Dx}.

Perhaps the most natural stochastically rationalizable and neutral extension rule is

f (x) =
∫
�x

y∗(α)dμ(α),

where μ is the uniform probability measure on �x. This rule assigns to x the uniform
average of the random dictatorships generated by all the possible decompositions of x.
By contrast, f (x) is the uniform average of the random dictatorships generated by the

extreme decompositions of x. The rule f is difficult to compute and it is not obvious
whether it differs from f .

For yet another example, let L denote the leximax ordering9 on �(P ), let αL
x be the

unique minimal element of L in the compact and convex set �x, and define fL(x) =
y∗(αL

x ). It is easy to see that the extension rule fL satisfies the two axioms in Theorem 1.
We show in the Appendix that it differs from f .

4.2 Incompatibilities

This subsection shows that several natural axioms are incompatible with (weak versions
of) stochastic rationalizability. We begin with a property suggested by the algebraic
structure of the sets X∗ and Y .

Linearity The map f : X∗ → Y is an affine function, i.e.,

f
(
λx+ (1 − λ)x′) = λf (x) + (1 − λ)f

(
x′) (5)

for all x, x′ ∈X∗ and λ ∈ [0, 1].
The fractional tournament λx + (1 − λ)x′ is generated by an electorate composed

of two constituencies: one containing a fraction λ of the total population and gener-
ating the fractional tournament x, the other containing a fraction 1 − λ of the popula-
tion and generating the fractional tournament x′. In the aggregate electorate, linearity

9For any α ∈ �(P ), let α̂ be the vector obtained from α by arranging its coordinates in nondecreasing
order, i.e., α̂ = (α̂(1), � � � , α̂(m!)) = (α(π(1)), � � � , α(π(m!))) for any bijection π : {1, � � � , m!} → P such that
α(π(1)) ≤ · · · ≤ α(π(m!)). The leximax ordering L on �(P ) is defined by letting αLβ if and only if either
α̂ = β̂ or there exists k ∈ {1, � � � , m!} such that α̂k > β̂k and α̂k′ = β̂k′ for all k′ >k.
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recommends to use the random choice function employed in each constituency with a
probability equal to the weight of that constituency in the total population.10

An important motivation for this axiom comes from the linearity of the random util-
ity model itself. That is, the function y∗ : �(P ) → Y defined by (2) satisfies

y∗(λα+ (1 − λ)α′) = λy∗(α) + (1 − λ)y∗(α′) (6)

for all α, α′ ∈ �(P ), and λ ∈ [0, 1]. It follows that on any subset of X∗ admitting a unique
stochastically rational extension rule, that extension rule is an affine function. Formally,
let D ⊆ P be a domain of preferences such that x∗(P )(P ∈ D) are affinely independent,
and define X∗

D := co{x∗(P )|P ∈ D} and Y ∗
D := co{y∗(P )|P ∈ D}. Since for any x ∈ X∗

D
there is a unique probability distribution α on D such that x = ∑

P∈Dα(P )x∗(P ), the
function x �→ ∑

P∈Dα(P )y∗(P ) is the unique admissible extension rule on X∗
D , i.e., the

only function f : X∗
D → Y ∗

D such that f (x) extends x for every x ∈ X∗
D . Because of (6), it

is an affine function.
Linearity embodies a natural idea of “betweenness preservation”: since αx + (1 −

α)x′ describes a society that lies between those described by x and x′, the random choice
function associated with αx+ (1 − α)x′ should lie between those associated with x and
x′. Note that the proportional Borda rule, for instance, satisfies linearity:

fBorda
aB

(
λx+ (1 − λ)x′) =

∑
c∈B\a

(
λxac + (1 − λ)x′

ac

)
(

|B|
2

)

= λ

∑
c∈B\a

xac(
|B|
2

) + (1 − λ)

∑
c∈B\a

x′
ac(

|B|
2

)
= λfBorda

aB (x) + (1 − λ)fBorda
aB

(
x′)

for all x, x′ ∈ X∗, λ ∈ [0, 1], B ∈ SA, and a ∈ B.
Of course, convex combinations express a specific, “cardinal” form of betweenness.

A more abstract, “ordinal” version of betweenness preservation may be defined by using
only the order structure of the sets X∗ and Y . For any x, x′, x′′ ∈ X∗, and y, y ′, y ′′ ∈ Y ,
write x′′ ∈ [x, x′] whenever min{xab, x′

ab} ≤ x′′
ab ≤ max{xab, x′

ab} for all (a, b) ∈ BA and y ′′ ∈
[y, y ′] whenever min{yaB, y ′

aB} ≤ y ′′
aB ≤ max{yaB, y ′

aB} for all B ∈ SA and a ∈ B.
Betweenness preservation For all x, x′, x′′ ∈ X∗, [x′′ ∈ [x, x′]] ⇒ [f (x′′ ) ∈ [f (x),

f (x′ )]].

10This can be regarded as a strengthening of Young’s (1975) reinforcement axiom. In our setting, re-
inforcement stipulates that for all x, x′ ∈ X∗, [f (x) = f (x′ )] ⇒ [f (λx + (1 − λ)x′ ) = f (x) for all λ ∈ [0, 1]].
Notice that every extension rule f trivially satisfies reinforcement since [f (x) = f (x′ )] ⇒ [x = x′] for all
x ∈ X∗.
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Linearity and betweenness preservation are very demanding. Both are incompati-
ble with stochastic rationalizability. In fact, they conflict with the following very mild
consequence of the latter axiom.

Rationalizability for unanimous tournaments For all P ∈ P , f (x∗(P )) ∈ Y ∗.
Observe that this axiom is also a consequence of the unanimity principle: since

x∗(P ) arises from a population of voters sharing the common preference ordering P ,
f (x∗(P )) should select the best feasible alternative according to P , i.e., f (x∗(P )) = y∗(P ).
This implies f (x∗(P )) ∈ Y ∗.

Theorem 2. If m≥ 3, no extension rule satisfies (i) rationalizability for unanimous tour-
naments and (ii) linearity or betweenness preservation.

Proof. Let us first show that rationalizability for unanimous tournaments is incom-
patible with linearity. Suppose, by way of contradiction, that f satisfies both axioms.
Focusing on the case A = {1, 2, 3}, consider again the decompositions (3) and (4) of
the fractional tournament x = ( 1

2 , 1
2 , 1

2 ). Since the only stochastically rationalizable ex-
tension of a unanimous tournament x∗(P ) is y∗(P ), applying linearity and rationaliz-
ability for unanimous tournaments to (3) yields f (x) = 1

2f (x∗(123)) + 1
2f (x∗(321)) =

1
2y

∗(123) + 1
2y

∗(321). Likewise, applying the axioms to (4) yields f (x) = 1
2f (x∗(132)) +

1
2f (x∗(231)) = 1

2y
∗(132) + 1

2y
∗(231). Since 1

2y
∗
{1,2,3}(123) + 1

2y
∗
{1,2,3}(321) = ( 1

2 , 0, 1
2 ) and

1
2y

∗
{1,2,3}(132) + 1

2y
∗
{1,2,3}(231)) = ( 1

2 , 1
2 , 0), we conclude that f (x) �= f (x), which is impos-

sible.
The incompatibility between rationalizability for unanimous tournaments and be-

tweenness preservation is even more radical: it holds on the subset of unanimous
tournaments. Indeed, x∗(213) = (0, 1, 0) ∈ [x∗(123), x∗(321)] = [(1, 1, 0), (0, 0, 1)] but
y∗(213) /∈ [y∗(123), y∗(321)] since y∗

{1,2,3}(213) = (0, 1, 0) /∈ [y∗
{1,2,3}(123), y∗

{1,2,3}(321)] =
[(1, 0, 0), (0, 0, 1)].

We conclude this section by studying a variant of Arrow’s independence of irrelevant
alternatives stipulating that the probability of choosing an alternative from an agenda
should only depend on the restriction of the fractional tournament to that agenda. For
any B ∈ SA and x ∈X∗, let BB = {(a, b) ∈ B×B|a �= b} and let xB = (xab )(a,b)∈B(B) denote
the restriction of the fractional tournament x to the alternatives in B.

Independence of irrelevant comparisons For all x, x′ ∈X∗ and B ∈ SA,[
xB = x′

B

] ⇒ [
fB(x) = fB

(
x′)]. (7)

The motivation is the same as for Arrow’s axiom. Young (1995) summarizes it as
follows:

“There are at least two reasons why this is desirable from a practical standpoint. First, if
it does not hold, then it is possible to manipulate the outcome by introducing extraneous
alternatives. [. . . ] Second, independence allows the electorate to make sensible decisions
within a restricted range of choices without worrying about the universe of all possible
choices. It is desirable to know, for example, that the relative ranking of candidates for
political office would not be changed if purely hypothetical candidates were included on
the ballot.”
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The following extension rule shows that independence of irrelevant comparisons is
compatible with rationalizability for unanimous tournaments: for all B ∈ SA and a ∈ B,
let

faB(x) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
y∗
aB(P ) if xB = x∗

B(P ) for some P ∈ P ,
1(

|B|
2

) ∑
b∈B\a

xab otherwise.

This rule is well-defined because y∗
B(P ) is identical for all P ∈ P such that xB = x∗

B(P ).
Unfortunately, independence of irrelevant comparisons clashes with another ele-

mentary consequence of stochastic rationalizability known as agenda monotonicity. A
random choice function y is agenda-monotonic if the probability of choosing an alterna-
tive from an agenda does not increase when that agenda expands: yaB ≥ yaB′ whenever
a ∈ B ⊆ B′ ⊆ A. This property is the natural counterpart of Chernoff’s (1954) axiom (or
Sen’s (1970) condition α) for deterministic choice correspondences, which requires that
a should not be chosen from B′ if it is not chosen from B. Let Ymon denote the set of
agenda-monotonic random choice functions.

Agenda monotonicity f (X∗ ) ⊆ Ymon.
It is well known that Y ∗ is a proper subset of Ymon when m ≥ 4. In fact, Falmagne’s

(1978) classic characterization of the rationalizable random choice functions shows that
agenda monotonicity is much weaker than stochastic rationalizability.

Theorem 3. If m≥ 4, no extension rule satisfies agenda monotonicity and independence
of irrelevant comparisons.

Proof. It is enough to establish the incompatibility when m = 4. Suppose, contrary to
the claim, that f : X∗ → Y satisfies agenda monotonicity and independence of irrele-
vant comparisons. Consider the fractional tournament

x=

⎡⎢⎢⎢⎣
− 0.5 0.5 0.6

0.5 − 0.5 0.1
0.5 0.5 − 0.1
0.4 0.9 0.9 −

⎤⎥⎥⎥⎦ .

To check that x ∈ X∗, note that x is generated by the following (10-voters) profile11

P = (P1, � � � , P10 ):

P1 P2 P3, P4 P5, P6 P7, P8 P9, P10

3 2 1 1 4 4
1 1 4 4 3 2
4 4 3 2 2 3
2 3 2 3 1 1

11Alternatively, it suffices to check that x satisfies the triangle inequalities; See footnote 5.
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Since f satisfies agenda monotonicity,

f2{1,2,3,4}(x) ≤ x24 = 0.1,

f3{1,2,3,4}(x) ≤ x34 = 0.1,

f4{1,2,3,4}(x) ≤ x41 = 0.4.

Since
∑4

a=1 fa{1,2,3,4}(x) = 1, the three inequalities above imply f1{1,2,3,4}(x) ≥ 0.4,
hence, by agenda monotonicity,

f1{1,2,3}(x) ≥ 0.4. (8)

Next, applying the same argument to the fractional tournaments

x′ =

⎡⎢⎢⎢⎣
− 0.5 0.5 0.1

0.5 − 0.5 0.6
0.5 0.5 − 0.1
0.9 0.4 0.9 −

⎤⎥⎥⎥⎦ , x′′ =

⎡⎢⎢⎢⎣
− 0.5 0.5 0.1

0.5 − 0.5 0.1
0.5 0.5 − 0.6
0.9 0.9 0.4 −

⎤⎥⎥⎥⎦ ,

leads to the inequalities

f2{1,2,3}
(
x′) ≥ 0.4, (9)

f3{1,2,3}
(
x′′) ≥ 0.4. (10)

But since xab = x′
ab = x′′

ab for all (a, b) ∈ B{1,2,3}, independence of irrelevant com-
parisons implies f{1,2,3}(x) = f{1,2,3}(x′ ) = f{1,2,3}(x′′ ). Hence, (8), (9), and (10) imply∑3

a=1 fa{1,2,3}(x) ≥ 1.2, which is impossible.

Two remarks are in order.
(1) Theorem 3 follows from a result of Pattanaik and Peleg (1986).12 In Pattanaik and

Peleg’s setting, there is a given finite set of voters, N = {1, � � � , n}, n ≥ 2, and a proba-
bilistic voting procedure (PVP) is a function g : PN → Y . Say that such a PVP g satisfies
agenda monotonicity* if

g
(
PN

) ⊆ Ymon

for every preference profile PN ∈ PN . For any B ∈ SA and PN ∈ PN , let PN
B denote the

restriction of PN to B and say that g satisfies independence of irrelevant comparisons* if[
PN
B = P

N
B

] ⇒ [
gB

(
PN

) = gB
(
P
N)]

for all PN , P
N ∈ PN and all B ∈ SA. Finally, call g Paretian if[

gaB
(
PN

)
> 0

] ⇒ [
�b ∈ B such that bPia for all i ∈N

]
12I am grateful to a referee for pointing out this connection and suggesting the argument that follows.
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for all PN ∈ PN , B ∈ SA, and a ∈ B. Let �(N ) = {β ∈ [0, 1]N |
∑

i∈Nβ(i) = 1} be the set of
probability distributions on the set of voters N . Pattanaik and Peleg (1986) prove the
following result.13

Theorem (Pattanaik and Peleg). If m ≥ 4 and g : PN → Y is a Paretian PVP satis-
fying agenda monotonicity* and independence of irrelevant comparisons*, there exists
β ∈ �(N ) such that

gB
(
PN

) =
∑
i∈N

β(i)y∗
B

(
Pi

)
for all PN ∈ PN and all B ∈ SA such that B �= A.

This theorem implies Theorem 3. To see why, let m ≥ 4 and suppose, by way of
contradiction, that f : X∗ → Y is an extension rule satisfying agenda monotonicity and
independence of irrelevant comparisons. Let N = {1, 2, � � � , 10}. For every preference
profile PN = (P1, � � � , P10 ) ∈ PN , denote by αPN ∈ �(P ) the probability distribution as-
signing to each linear ordering the fraction of voters in N whose preference coincides
with that ordering, i.e.,

αPN (P ) =
∣∣{i ∈N|Pi = P

}∣∣
|N|

for all P ∈ P . Define the PVP g : PN → Y by

g
(
PN

) = f
(
x∗(αPN )

)
(11)

for all PN ∈ PN , where x∗(αPN ) is the fractional tournament generated by αPN , as de-
fined in (1).

It is straightforward to check that g satisfies agenda monotonicity* and indepen-
dence of irrelevant comparisons*. To check that g is Paretian, let PN ∈ PN , B ∈ SA,
a, b ∈ B, and suppose that bPia for all i ∈ N . By definition, x∗

ab(αPN ) = 0. By (11) and
because f is an extension rule, ga{a,b}(P

N ) = fa{a,b}(x
∗(αPN )) = x∗

ab(αPN ) = 0. Since g

satisfies agenda monotonicity*, gaB(PN ) ≤ ga{a,b}(P
N ), hence gaB(PN ) = 0.

By Pattanaik and Peleg’s theorem, there exists β ∈ �(N ) such that gB(PN ) =∑
i∈N β(i)y∗

B(Pi ) for all PN ∈ PN and all B ∈ SA \ {A}. Next, note that g is anony-
mous in the traditional sense: for every (P1, � � � , P10 ) ∈ PN and every bijection σ

from N to N , α(Pσ(1), ���,Pσ(10) ) = α(P1, ���,P10 ) ⇒ x∗(α(Pσ(1), ���,Pσ(10) ) ) = x∗(α(P1, ���,P10 ) ) ⇒
g(Pσ(1), � � � , Pσ(10) ) = g(P1, � � � , P10 ). Because g is anonymous, it is easy to see that β
must be uniform, i.e.,

gB
(
PN

) = 1
10

10∑
i=1

y∗
B

(
Pi

)
(12)

for all PN ∈ PN and all B ∈ SA \ {A}.

13This is Pattanaik and Peleg’s Theorem 4.11, restated using our terminology and notation.
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Applying (12) to the preference profile PN = (P1, � � � , P10 ) defined in the proof of
Theorem 3 and B = {1, 2, 3} yields

g{1,2,3}
(
PN

) = (0.4, 0.3, 0.3).

Similarly, applying (12) to the profile PN given by

P
1

P
2

P
3

, P
4

, P
5

P
6

P
7

P
8

, P
9

, P
10

3 2 1 1 4 4
1 1 4 4 3 2
4 4 3 2 2 3
2 3 2 3 1 1

and B = {1, 2, 3} yields

g{1,2,3}
(
P
N) = (0.4, 0.4, 0.2).

Thus, g(PN ) �= g(P
N

). Check, however, that x∗(αPN ) = x∗(α
P
N ). It follows from (11) that

g(PN ) = g(P
N

), a contradiction.
(2) Moulin (1986) proves a variant of Theorem 3 for a rule ϕ associating a determin-

istic choice correspondence to every pure tournament (i.e., every fractional tournament
belonging to {0, 1}BA ). He shows that no such rule satisfies Condorcet consistency, Ar-
row’s IIA, and Chernoff. Condorcet consistency can be weakened to the requirement
that ϕ is an extension rule, i.e., alternative a is the unique choice from {a, b} whenever a
beats b. Arrow’s IIA is the deterministic counterpart of independence of irrelevant com-
parisons. As mentioned earlier, Chernoff requires that an alternative rejected from an
agenda be rejected from any superset of that agenda, and our axiom of agenda mono-
tonicity may be regarded as a very weak random version of Chernoff. Moulin’s result
holds if m≥ 3 while Theorem 3 requires m≥ 4.14

5. Sequentially binary domains

In this section, we explore preference domains generating fractional tournaments that
have a unique stochastically rationalizable extension with support in that domain. If
voters’ preferences belong to such a domain, the information revealed by the associated
fractional tournament to a decision maker who subscribes to the stochastic rational-
izability axiom fully pins down her random choices from all agendas. The approach
adopted here thus complements the axiomatic analysis of Section 4 by identifying con-
ditions under which the search for axioms supplementing stochastic rationalizability
is unnecessary. We note that the theory of majority voting is similarly divided into
two strands: the core of the theory, which proposes methods for making determinis-
tic choices extending an arbitrary majority tournament, is complemented by a domain-
restriction literature studying conditions ensuring the transitivity of the majority tour-
nament. See, for instance, Chapter 10 of Moulin (1988).

14When m = 3, every stochastically rationalizable extension rule f satisfies independence of irrelevant
comparisons (because the requirement fa{a,b}(x) = xab implies fa{a,b}(x) = fa{a,b}(x

′ ) for all x, x′ such that
x{a,b} = x′

{a,b}) and agenda monotonicity (because that axiom is implied by stochastic rationalizability).
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A domain (on A) is a set D ⊆ P . In some contexts, the collective decision maker may
know that the support of the probability distribution α ∈ �(P ) generating x is included
in a given domain D of admissible preferences, and this may suffice to guarantee that x
has a unique admissible stochastically rationalizable extension.

A trivial case occurs when the fractional tournaments x∗(P ) corresponding to the or-
derings P belonging to the domain D are affinely independent. The distribution α itself
is then unique. But since the dimension of X∗ is m(m− 1)/2, the domain D contains at
most m(m − 1)/2 + 1 orderings. The single-crossing domains discussed in Apesteguia,
Ballester, and Lu (2017) are an example.

This section studies a class of domains that we call sequentially binary. A sequen-
tially binary domain contains 2m−1 orderings. Each ordering results from m − 1 suc-
cessive binary choices. The first binary choice determines the worst alternative. The
second binary choice, which depends upon the outcome of the first, determines the
second-worst alternative. The last binary choice is conditional upon the outcome of
the m− 2 preceding choices and determines the second-best alternative, hence also the
first-best alternative. There are restrictions tying the successive choices, which will be
described shortly.

Although a fractional tournament x may be generated by several probability dis-
tributions with support in a given sequentially binary domain, we will show that all
such distributions generate the same random choice function. This means that the ran-
dom choices from agendas of all sizes are completely determined by the requirement of
stochastic rationalizability.

For each m ∈ N, let Sm = {0, 1}m and S(m) = ⋃m
k=1 S

k. Write S = ⋃
k∈N Sk. An element

of Sm is a sequence s = (s1, � � � , sm ) of m numbers in {0, 1}. We call it binary and refer
to m as its length. An element of S(m) is a binary sequence of length at most m, and an
element of S is a binary sequence of finite length. For convenience, we denote by s0 the
“empty sequence” (of zero length) and define S(m)

0 = S(m) ∪ {s0} and S0 = S ∪ {s0}. We say
that s = (s1, � � � , sk ) precedes s′ = (s′1, � � � , s′k′ ) (or, equivalently, s′ follows s) if k < k′ and
s = (s′1, � � � , s′k ), which we write s ≺ s′. By convention, s0 ≺ s for every s ∈ S. The direct
followers of s = (s1, � � � , sk ) ∈ S are (s, 0) := (s1, � � � , sk, 0) and (s, 1) := (s1, � � � , sk, 1). By
convention, the direct followers of s0 are the two sequences (0) and (1).

One can think of (S(m−1)
0 , ≺) as a binary tree whose nodes are the sequences s ∈

S(m−1)
0 . The tree is rooted at s0 and its terminal nodes are the binary sequences of length

m−1. Figure 1 depicts the case m= 3; an edge is drawn between each nonterminal node
and its direct followers.

Definition 1. A selection function (into A) is a function g : S(m−1) → A such that

g(s) �= g
(
s′
)

for all s, s′ ∈ S(m−1) such that s ≺ s′, (13)

g(s, 0) �= g(s, 1) for all s ∈ S(m−2)
0 . (14)

We will again write an ordering P ∈ P by listing the m alternatives in A from best to
worst: thus, P = a1a2 · · ·am is the ordering according to which a1 is the best alternative in
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Figure 1. The binary tree (S(2)
0 , ≺)

A, a2 is the second best, and so on. For each s = (s1, � � � , sm−1 ) ∈ Sm−1, define Pg(s) ∈ P
by

Pg(s) := ag(s)g(s1, � � � , sm−1 ) · · ·g(s1, s2 )g(s1 ),

where ag(s) is the unique alternative in A \ {g(s1, � � � , sm−1 ), � � � , g(s1, s2 ), g(s1 )}. This
is well-defined because condition (13) ensures that g(s1, � � � , sm−1 ), � � � , g(s1, s2 ), g(s1 )
are distinct alternatives. One can think of Pg(s) as constructed “from bottom to top”
by filling up the successive ranks: at each node (s1, � � � , sk ) ≺ s, the two alternatives
g(s1, � � � , sk, 0) and g(s1, � � � , sk, 1) are offered to fill rank m − k, and the successive
choices determine Pg(s).

Condition (14) implies that Pg(s) �= Pg(s′ ) if s �= s′. It follows that

Dg := {
Pg(s)|s ∈ Sm−1}

contains exactly 2m−1 distinct orderings on A. To get a grasp on the domain Dg, it may
be helpful to identify the orderings that do not belong to it. All orderings for which the
worst alternative is neither g((0)) nor g((1)) are excluded. Among the orderings whose
worst alternative is g((0)), all those for which the second-worst alternative is neither
g((0, 0)) nor g((0, 1)) are ruled out, and so on.

The sequentially binary domains are generated by a subclass of selection functions
that we now describe. For any s, s′ ∈ S, let us write s � s′ if s ≺ s′ or s = s′, and let
W P(s) = {s′ ∈ S|s′ � s} be the set of binary sequences that weakly precede s. The twin
of s = (s1, � � � , sk ) ∈ S is the sequence tw(s) = (s1, � � � , sk−1, s′k ) ∈ S such that s′k �= sk. For

each s ∈ S(m−2)
0 , let Og(s) = {g(s, 0), g(s, 1)}. This may be interpreted as the “option set”

generated by g at s: it contains the two alternatives competing to fill the rank open at s.

Definition 2. A selection function g into A is consistent if

g(s) ∈Og
(
tw(s)

)
for all s ∈ S(m−2) (15)
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and

Og(s) =Og
(
s′
)

for all s, s′ ∈ S(m−2) such that g
(
W P(s)

) = g
(
W P

(
s′
))

. (16)

Condition (15) says that an alternative offered to fill the rank open at a node must be
offered again at the node reached by rejecting that alternative. Condition (16) says that
the pair of alternatives offered at a node s may only depend upon the set of alternatives
that were selected at the nodes preceding s, but not upon the order in which they were
selected.

Definition 3. Let GA be the set of consistent selection functions into A. A domain
D ⊆ P is sequentially binary if D = Dg for some g ∈GA.

When m = 3, it is easy to see that a domain is sequentially binary if and only if it is a
maximal single-peaked domain in the sense of Black (1948).15

Two examples of sequentially binary domains are illustrated in Figure 2 for the case
m = 4. For each node s other than the root, g(s) is indicated next to s. For each terminal
node s, the ordering Pg(s) is recorded below s by listing the alternatives from best to
worst.

At each node in Figure 2(a), the choice is between the smallest and the largest alter-
natives that remain to be ranked. The resulting domain Dg contains the eight orderings
that are single-peaked with respect to the ordering 1234. The domain in Figure 2(b)
is inspired by the successive elimination voting rule (Moulin (1988, p. 241)). In stage
k = 1, � � � , m − 1, the largest two alternatives among those remaining to be ranked are
paired and compete for rank m − k + 1. Up to a relabeling of the alternatives, these are
the only two sequentially binary domains when m= 4.

Figure 3 depicts two domains that are not sequentially binary.
In Figure 3(a), the underlying selection function violates condition (15). Indeed,

g((1)) = 4 /∈ Og((0)) = {1, 2}: alternative 4 is offered to fill rank 4 at the root but is not
offered to fill rank 3 at the sequence s = (0) that is reached by rejecting 4. Indeed,
g(W P((0, 1))) = g(W P((1, 0))) = {1, 5} but O((0, 1)) = {2, 3} �= O((1, 0)) = {2, 4}. Note
that condition (15) implies a form of connectedness of Dg: if an alternative is ranked
last by an ordering in the domain, it is ranked at any possible rank by an ordering in the
domain. Condition (16) is vacuous when m ≤ 4. In Figure 3(b), m = 5 and the selection
function g satisfies condition (15) but not (16). Indeed, g(W P((0, 1))) = g(W P((1, 0))) =
{1, 5} but O((0, 1)) = {2, 3} �=O((1, 0)) = {2, 4}.

For any D ⊆ P , let �(D) = {α ∈ [0, 1]D|
∑

P∈Dα(P ) = 1} be the set of probability dis-
tributions on D. For any α ∈ �(D), we slightly abuse our earlier notation and write
x∗(α) = ∑

P∈D α(P )x∗(P ) and y∗(α) = ∑
P∈D α(P )y∗(P ).

Theorem 4. If D is a sequentially binary domain and α, α′ ∈ �(D), then [x∗(α) =
x∗(α′ )] ⇒ [y∗(α) = y∗(α′ )].

15A domain D ⊆ P is single-peaked with respect to a linear ordering > on A if [b > a >

maxA P or maxA P > a> b] ⇒ [aPb] for all P ∈ D, where maxA P denotes the best alternative in A according
to P . We call a domain single-peaked if it is single-peaked with respect to some linear ordering.
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(a)

(b)

Figure 2. (a) A single-peaked domain. (b) A successive elimination domain.

In words: two distributions on a sequentially binary domain D that generate the
same fractional tournament also generate the same random choice function. Thus, if a
fractional tournament arises from a population of voters with preferences in D, it has a
unique admissible extension, namely a unique extension generated by a population of
voters with preferences in D.

To state this formally, recall our notation X∗
D = {x∗(α)|α ∈ �(D)} and Y ∗

D = {y∗(α)|α ∈
�(D)}. By an extension rule on X∗

D , we mean a function f : X∗
D → Y such that f (x)

extends x for all x ∈X∗
D . We call f admissible if f (X∗

D ) ⊆ Y ∗
D .

Corollary to Theorem 4. If D is a sequentially binary domain, there is a unique ad-
missible extension rule on X∗

D .
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(a)

(b)

Figure 3. (a) A domain violating condition (16) (b) A domain violating condition (15).

Note that a fractional tournament x ∈ X∗
D may have multiple stochastically rational-

izable extensions. What the corollary above states is that exactly one such extension is
admissible. Consider the three-alternative case and let D ={123, 213, 231, 321}. This is
the single-peaked domain with respect to the natural ordering of the alternatives, an ex-
ample of a sequentially binary domain. Clearly, x = ( 1

2 , 1
2 , 1

2 ) = 1
2x

∗(123) + 1
2x

∗(321) ∈
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X∗
D . Yet, 1

2y
∗(123) + 1

2y
∗(321) and 1

2y
∗(132) + 1

2y
∗(231) are two different stochastically

rationalizable extensions of x. The first is admissible because 123, 321 ∈ D; the second
is not because 132 /∈ D.

The proof of Theorem 4 is given in the Appendix and the corollary follows directly
from the theorem.

Two of the incompatibilities identified in Theorems 2 and 3 vanish on the fractional
tournaments generated by preferences in a sequentially binary domain. Formally, say
that an extension rule f on X∗

D satisfies linearity on X∗
D if property (5) holds for all x, x′ ∈

X∗
D , and λ ∈ [0, 1], and say that f satisfies independence of irrelevant comparisons on

X∗
D if property (7) holds for all x, x′ ∈ X∗

D , and B ∈ SA.

Theorem 5. If D is a sequentially binary domain, the unique admissible extension rule
f on X∗

D satisfies linearity and independence of irrelevant comparisons on X∗
D .

Note that f does not satisfy betweenness preservation on X∗
D . Indeed, the argument

establishing the incompatibility of betweenness preservation and rationalizability for
unanimous tournaments in the proof of Theorem 2 only uses preferences in the single-
peaked domain D = {123, 213, 231, 321}.

The proof in the Appendix actually establishes a stronger statement than Theorem 5.
For any P ∈ P and B ∈ SA, let PB denote the restriction of P to B. For any D ⊆ P , define
DB := {PB|P ∈ D} and let X∗

DB
denote the set of fractional tournaments on B that are

generated by a probability distribution on DB.
We show that (i) for any domain D ensuring the existence of a unique admissible ex-

tension rule on X∗
D , this extension rule satisfies linearity on X∗

D , and (ii) for any domain
D ensuring that for every B ∈ SA there is a unique admissible extension rule on X∗

DB
, the

extension rule on X∗
D satisfies independence of irrelevant comparisons on X∗

D .
As an illustration of Theorem 5, suppose that D is the set of single-peaked prefer-

ences with respect to the natural ordering of the alternatives. It is not difficult to check
that the unique admissible extension rule f on X∗

D is then given by

faB(x) = xamin{b∈B|b>a} − xmax{b∈B|a>b}a

for all x ∈ X∗
D , B ∈ SA, and a ∈ B (with the convention xamin∅ = 1 and xmax∅a = 0). This

rule obviously satisfies the two axioms in Theorem 5.
The sequentially binary domains are maximal domains generating fractional tour-

naments with a unique admissible extension. To state this formally, let ⊂ denote strict
inclusion. The proof of the following result is in the Appendix.

Proposition. If D is a sequentially binary domain and D ⊂ D′ ⊆ P , there exist α, α′ ∈
�(D′ ) such that x∗(α) = x∗(α′ ) and y∗(α) �= y∗(α′ ).

6. Further connections to the literature and concluding remarks

Throughout this paper, we interpreted an extension rule as a mechanism for making
randomized social choices based on the fractional tournament generated by the vot-
ers’ preferences. But an individual choice interpretation also makes sense: a fractional
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tournament encodes the randomized binary choices of a single stochastically rational
individual, and an extension rule is a procedure for inferring from that information the
individual’s randomized choices from larger agendas.

It is worth recalling that deterministic rationalizable choice functions are completely
determined by their restriction to binary agendas. This property is arguably their great-
est advantage: it tremendously simplifies both the decision maker’s problem and the
external analyst’s task of predicting the decision maker’s choices.16 Since stochastically
rationalizable random choice functions too are based on orderings, i.e., on binary com-
parisons, it is natural to inquire to what extent stochastic choices from arbitrary agendas
can be inferred from stochastic binary choices.

The corollary to Theorem 4 may be reinterpreted as a partial answer to that ques-
tion. Under the individual choice interpretation, however, conditions for a unique ex-
tension to a rationalizable fractional tournament x need not take the form of restrictions
on the support of the distribution of preferences generating x. The more general prob-
lem, phrased in the language of individual choice theory, consists of determining which
submodels of the random utility model possess the “unique extension property” that a
random choice function is fully determined by its behavior on the binary agendas.

The issue received some attention in the literature. Marley (1982) notes that in the
strict utility model proposed by Luce (1959), the choice probabilities on a subset B of
alternatives are a rational function of the binary choice probabilities between alterna-
tives in B. He shows that this property is shared by the so-called independent Thurto-
nian models, and also by some non-independent random utility models. Apesteguia,
Ballester, and Lu (2017) show that the unique extension property holds for the single-
crossing model.

A related issue is that of identification. The question here is whether the probability
distribution generating a random choice function is unique. If m≥ 4, a stochastically ra-
tionalizable choice function is typically unidentified: see Barberà and Pattanaik (1986),
Fishburn (1988), and McClellon (2015). Turansick (2022) offers a complete characteriza-
tion of the random choice functions that are generated by a unique distribution.

The unique extension issue is linked to that of identification. Indeed, if a rationaliz-
able fractional tournament x is identified, i.e., if the probability distribution generating
x is unique, then x has a unique stochastically rationalizable extension y.

But it is neither necessary nor sufficient that a random choice function y be identi-
fied to guarantee that it is the unique stochastically rational extension of the fractional
tournament x it generates.

To see that identification of y is not sufficient, observe that the three-alternative ran-
dom choice function y uniquely generated by the distribution α(123) = α(321) = 1

2 gen-
erates the fractional tournament x = ( 1

2 , 1
2 , 1

2 ), which admits the random choice func-
tion y ′ uniquely generated by α′(132) = α′(231) = 1

2 as an alternative stochastically ra-
tional extension. Note that x is not identified, although y, y ′ are.

To see that identification of y is not necessary, consider the four-alternative example
discussed in Fishburn (1988). Although the two distributions α(1234) = α(2143) = 1

2 and

16As Moulin (1988, page 306), points out, a binary relation on A is determined by only m(m− 1)/2 pair-
wise comparisons whereas a choice function involves nearly 2m free parameters.
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α′(1243) = α(2134) = 1
2 generate the same random choice function y, it is easy to see that

y is the unique stochastically rationalizable extension of the fractional tournament x it
extends. Neither x nor y is identified.

Ultimately, the quest for identified models proceeds from an intention to predict
choice behavior. As Turansick (2022) argues,

“Identification guarantees that counterfactual analysis will be accurate up to the choice of
model. When choice behavior has multiple representations, counterfactuals may take on
different values for each one of these representations.”

But there seems to be little room for counterfactuals if the random choice function
is completely known. Identification matters when the analyst observes choice frequen-
cies from a restricted set of agendas: counterfactual analysis then consists of predict-
ing choice from other agendas.17 An extension rule performs precisely that task for the
particular case where choice frequencies are observed for binary agendas. The general
problem of extending a random choice function defined on an arbitrary incomplete col-
lection of agendas deserves further study.

Appendix

A.1 More on neutrality

We check that the leximax extension rule fL differs from the extension rule f . Consider
the three-alternative rationalizable fractional tournament x= (x12, x23, x31 ) = ( 2

3 , 1
3 , 2

3 ).
Write any distribution α ∈ �(P ) as α = (α(123), α(132), α(312), α(321), α(231), α(213)).

To compute f (x), check first that the carriers of x are

D1 = {123, 312, 321},

D2 = {132, 312, 231},

D3 = {312, 213},

and the corresponding decompositions of x are αD1 = ( 1
3 , 0, 1

3 , 1
3 , 0, 0), αD2 = (0, 1

3 , 1
3 ,

0, 1
3 , 0), and αD3 = (0, 0, 2

3 , 0, 0, 1
3 ). The probability distribution on {1, 2, 3} prescribed

by f (x) is

f {1,2,3}(x) = 1
3
fD1

{1,2,3}(x) + 1
3
fD2

{1,2,3}(x) + 1
3
fD3

{1,2,3}(x)

= 1
3

(
1
3

, 0,
2
3

)
+ 1

3

(
1
3

,
1
3

,
1
3

)
+ 1

3

(
0,

1
3

,
2
3

)
=

(
2
9

,
2
9

,
5
9

)
.

17As Turansick (2022) points out, identification is also important from a theoretical viewpoint:

“One of the main goals of choice theory is to provide simplified approximations of reality in an at-

tempt to explain observed choice behavior. Identification of a model allows us to do exactly this.”

This theoretical motivation for identification is compelling even for choice functions defined on all agen-
das.



80 Yves Sprumont Theoretical Economics 20 (2025)

To compute fL(x), check that minimizing the leximax ordering over �x = co{αD1 ,
αD2 , αD3 } gives αL

x = ( 1
6 , 1

6 , 1
3 , 1

6 , 1
6 , 0). The probability distribution on {1, 2, 3} prescribed

by fL(x) is therefore

fL{1,2,3}(x) =
∑
P∈P

αL
x (P )y∗

{1,2,3}(P )

= 1
6

(1, 0, 0) + 1
6

(1, 0, 0) + 1
3

(0, 0, 1) + 1
6

(0, 0, 1) + 1
6

(0, 1, 0)

=
(

1
3

,
1
6

,
1
2

)
.

To understand the difference with the distribution prescribed by the rule f , notice
that the latter can be written f {1,2,3}(x) = ∑

P∈Pαx(P )y∗
{1,2,3}(P ) where αx = ( 1

9 , 1
9 , 4

9 , 1
9 ,

1
9 , 1

9 ) maximizes the leximin ordering on �x.

A.2 Proof of Theorem 4

For any P ∈ P and B ∈ SA, recall that PB denotes the restriction of P to B and, for any
D ⊆ P , DB = {PB|P ∈ D}. As before, ⊂ denotes strict inclusion.

Lemma 1. If D ⊆ P is a sequentially binary domain on A and B ∈ SA, then DB is a se-
quentially binary domain on B.

Proof. Let D ⊆ P be a sequentially binary domain on A, |A| = m. By definition, there
exists a function g ∈ GA such that Dg= D. We fix an alternative a ∈ A, without loss of
generality a= 1, and prove that there exists a function g′ ∈GA\{1} such that DA\{1} = Dg′ .
The function g′ is constructed from g through a sequential process. We define a finite
sequence (Vt , ht )Tt=1 such that S(m−1) = V1 ⊃ · · · ⊃ VT = S(m−2) and each ht is a function
from Vt to A. The function h1 coincides with g, and each function ht+1 is defined by
altering its predecessor ht . The construction ensures that g′ := hT belongs to GA\{1} and
Dg′ = DA\{1}.

Step 1 Preliminaries.
Call a set V ⊆ S(m−1) comprehensive if (i) [s ∈ V , s′ ∈ S, s′ ≺ s] ⇒ [s′ ∈ V ] and (ii) for all

s ∈ S0, [(s, 0) ∈ V ] ⇔ [(s, 1) ∈ V ]. Note that S(m−1) and S(m−2) are comprehensive. Given
a comprehensive set V , write V0 = V ∪ {s0} and let ∂V be the set of terminal sequences in
V , namely ∂V = {s ∈ V |(s, 0), (s, 1) /∈ V }. For any function h : V →A and any s ∈ V0 \ ∂V ,
let Oh(s) = {h(s, 0), h(s, 1)}.

Let HV be the set of functions h : V → A satisfying the following properties:

h(s) �= h
(
s′
)

for all s, s′ ∈ V such that s ≺ s′, (17)

h(s, 0) �= h(s, 1) for all s ∈ V0 \ ∂V , (18)

and

h(s) ∈Oh

(
tw(s)

)
for all s ∈ V such that h(s) �= 1, (19)
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Oh(s) =Oh

(
s′
)

for all s, s′ ∈ V0 \ ∂V such that

h
(
W P(s)

) \ {1} = h
(
W P

(
s′
)) \ {1}.

(20)

These properties generalize the conditions defining a consistent selection function,
namely (13), (14), (15), (16). In particular, observe that HS(m−1) = GA and HS(m−2) =
GA\{1}.

Step 2 Defining the sequence (Vt , ht )Tt=1 and the function g′.
First, define

(V1, h1 ) = (
S(m−1), g

)
.

To complete the definition of the sequence, proceed inductively. Let T := |g−1(1)|,
fix t ∈ {1, � � � , T − 1}, and suppose (V1, h1 ), � � � , (Vt , ht ) have been defined. To de-
fine (Vt+1, ht+1 ), we introduce additional notation. For any s = (s1, � � � , sk ) ∈ Vt , let
NFt(s) = Vt \ {s′ ∈ Vt|s ≺ s′} denote the set of sequences in Vt that do not follow s. For
any s′ = (s′1, � � � , s′k′ ) ∈ S, let ss′ := (s1, � � � , sk, s′1, � � � , s′k′ ) be the sequence obtained by ap-
pending s′ to s. If S′ ⊆ S, we write sS′ = {ss′|s′ ∈ S′} (and assume, by convention, s∅ = ∅).
The set of continuations of s in Vt is Cot(s) = {s′ ∈ S|ss′ ∈ Vt }.

Pick a sequence of last occurrence of 1 in Vt , i.e., a sequence s1 ∈ Vt such that ht(s1 ) =
1 and ht(s) �= 1 for all s ∈ Vt such that tw(s1 ) ≺ s. Define the direct predecessor of a node
s = (s1, � � � , sk ) ∈ S to be dp(s) = (s1, � � � , sk−1 ) if k> 1 and dp(s) = s0 if k = 1. Let

Vt+1 = NFt
(
dp

(
s1))∪ dp

(
s1)Cot

(
s1). (21)

Note that the two sets on the right side of this equation are disjoint. For each s ∈
dp(s1 )Cot(s1 ), let σ(s) be the sequence in Cot(s1 ) such that s = dp(s1 )σ(s). Define
ht+1 : Vt+1 → A by

ht+1(s) =
{
ht(s) if s ∈NFt

(
dp

(
s1)),

ht
(
s1σ(s)

)
if s ∈ dp

(
s1)Cot

(
s1).

(22)

The construction of (Vt+1, ht+1 ) is illustrated in Figure 4.
In essence, it consists in picking a sequence s1 of last occurrence of 1 in Vt and re-

placing the subtree rooted at the direct predecessor of s1 (and the alternatives selected
by ht at the nodes of that subtree) by the subtree rooted at s1 (and the alternatives se-
lected by ht at the nodes of that subtree).

Observe that S(m−1) = V1 ⊃ · · · ⊃ VT = S(m−2), each Vt is comprehensive, and each ht

is a function from Vt to A. Moreover, |h−1
t+1(1)| = |h−1

t (1)| − 1 for each t ∈ {1, � � � , T − 1},
i.e., the number of nodes where alternative 1 is selected decreases by one at each step
along the sequence (Vt , ht )Tt=1. Since T = |g−1(1)|, it follows that |h−1

T (1)| = 0, meaning
that the range of hT is A \ {1}.

Define g′ : S(m−2) →A \ {1} by g′ = hT .
Step 3 Proving that g′ ∈GA\{1}.
By definition, h1 = g ∈ GA = HV1 . Proceeding inductively, we now fix t ∈ {1, � � � , T −

1}, assume that ht ∈HVt , and show that ht+1 ∈HVt+1 . It then follows that g′ := hT ∈HVT =
GA\{1}.
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Figure 4. Constructing the sequence
(
Vt , ht

)

Since ht : Vt → A satisfies (17) and (18), it is clear that ht+1 : Vt+1 → A also does. It

remains to show that ht+1 satisfies (19) and (20).

Step 3.1 ht+1 satisfies (19).

Let s ∈ Vt+1, and suppose ht+1(s) �= 1 and tw(s) ∈ Vt+1 \∂Vt+1. We claim that ht+1(s) ∈
Oht+1 (tw(s)).

If s ∈ NFt(dp(s1 )), then ht+1(s) = ht(s). Since tw(s) /∈ ∂Vt+1, we have tw(s) /∈ ∂Vt .

By the induction hypothesis, ht(s) ∈ Oht (s). Since Oht (tw(s)) = Oht+1 (tw(s)), the claim

follows.



Theoretical Economics 20 (2025) Randomized collective choices 83

If s ∈ dp(s1 )Cot(s1 ), there exists σ(s) such that s = dp(s1 )σ(s) and we have ht+1(s) =
ht(s1σ(s)). By the induction hypothesis, ht(s1σ(s)) ∈ Oht (tw(s1σ(s))) = Oht+1 (tw(s))),
and the claim follows again.

Step 3.2 ht+1 satisfies (20).
Let s, s′ ∈ Vt+1 \ ∂Vt+1 and suppose

ht+1
(
W P(s)

) \ {1} = ht+1
(
W P

(
s′
)) \ {1}. (23)

We claim that Oht+1 (s) =Oht+1 (s′ ).
Case (i) s, s′ ∈NFt(dp(s1 )).
Then v ∈ NFt(dp(s1 )) for all v ∈ W P(s) ∪ W P(s′ ). From (22), ht+1(W P(s)) =

ht(W P(s)) and ht+1(W P(s′ )) = ht(W P(s′ )). Hence, by (23), ht(W P(s)) \ {1} =
ht(W P(s′ )) \ {1}. By the induction hypothesis, Oht (s) = Oht (s

′ ). Since by definition
Oht+1 (s) =Oht (s) and Oht+1 (s′ ) = Oht (s

′ ), the claim follows.
Case (ii) s, s′ ∈ dp(s1 )Cot(s1 ).
Then there exist σ(s), σ(s′ ) ∈ Cot(s1 ) such that s = dp(s1 )σ(s) and s′ = dp(s1 )σ(s′ ).

For any two sets A, B, write C = A � B if C = A ∪ B and A ∩ B = ∅. Observe that
W P(s) =W P(dp(s1 )) � dp(s1 )W P(σ(s)). Since W P(dp(s1 )) ⊆ NFt(dp(s1 )), (22) implies
ht+1(W P(dp(s1 ))) = ht(W P(dp(s1 ))). Since dp(s1 )W P(σ(s)) ⊆ dp(s1 )Cot(s1 ), (22) im-
plies ht+1(dp(s1 )W P(σ(s))) = ht(s1W P(σ(s))). Hence,

ht+1
(
W P(s)

) = ht
(
W P

(
dp

(
s1)))� ht

(
s1W P

(
σ(s)

))
.

Likewise,

ht+1
(
W P

(
s′
)) = ht

(
W P

(
dp

(
s1)))� ht

(
s1W P

(
σ
(
s′
)))

.

Combining these statements with (23), we get ht(s1W P(σ(s))) \ {1} = ht(s1W P(σ(s′ ))) \
{1}. It follows that[

ht
(
W P

(
s1))� ht

(
s1W P

(
σ(s)

))] \ {1} = [
ht

(
W P

(
s1))� ht

(
s1W P

(
σ
(
s′
)))] \ {1};

hence, [ht(W P(s1σ(s)))] \ {1} = [ht(W P(s1σ(s′ )))] \ {1}. By the induction hypothesis,
Oht (s

1σ(s)) =Oht (s
1σ(s′ )), and the claim follows by definition of ht+1.

Case (iii) s ∈NFt(dp(s1 )) and s′ ∈ dp(s1 )Cot(s1 ).
In this case, we have

ht+1
(
W P(s)

) = ht
(
W P(s)

)
,

ht+1
(
W P

(
s′
)) = ht

(
W P

(
dp

(
s1)))� ht

(
s1W P

(
σ
(
s′
)))

,

and (23) implies

ht
(
W P(s)

) \ {1} = [
ht

(
W P

(
dp

(
s1))) \ {1}

]� [
ht

(
s1W P

(
σ
(
s′
))) \ {1}

]
= [

ht
(
W P

(
s1)) \ {1}

]� [
ht

(
s1W P

(
σ
(
s′
))) \ {1}

]
= ht

(
W P

(
s1σ

(
s′
))) \ {1},
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where the second equality holds because ht(s1 ) = 1. By the induction hypothesis,
Oht (s) =Oht (s

1σ(s′ )), and the claim follows again by definition of ht+1.
Step 4 Proving that Dg′ = DA\{1}.
For each t ∈ {1, � � � , T }, every sequence s ∈ ∂Vt has length m − 1 or m − 2. If s has

length m− 1, say, s = (s1, � � � , sm−1 ), then

Pht (s) := aht (s)ht(s1, � � � , sm−1 ) · · ·ht(s1, s2 )ht(s1 ) ∈ PA = P ,

where aht (s) is the unique alternative in A \ {ht(s1, � � � , sm−1 ), � � � , ht(s1, s2 ), ht(s1 )}. If s
has length m− 2, say, s = (s1, � � � , sm−2 ), then ht(W P(s)) =A \ {1} and

Pht (s) := at(s)ht(s1, � � � , sm−2 ) · · ·ht(s1, s2 )ht(s1 ) ∈ PA\{1},

where aht (s) is the unique alternative in A \ {ht(s1, � � � , sm−2 ), � � � , ht(s1, s2 ), ht(s1 )}.
Let Pt,1(s) be the restriction of Pht (s) to A \ {1} and define

Dt,1 = {
Pt,1(s)|s ∈ ∂Vt

}
.

Note that D1,1 = Dg = DA\{1} and DT ,1 = Dg′ . To prove that Dg′ = DA\{1}, it therefore
suffices to establish that Dt+1,1 = Dt,1 for each t = 1, � � � , T − 1.

Fix t ∈ {1, � � � , T − 1} and recall the definition of Vt+1 from (21), where s1 is a se-
quence of last occurrence of 1 in Vt . Let W Ft(s1 ) = {s ∈ Vt|s1 � s} and W Ft+1(dp(s1 )) =
{s ∈ Vt+1|dp(s1 ) � s}. Partition ∂Vt into the following components:

At = ∂Vt ∩NFt
(
dp

(
s1)),

Bt = ∂Vt ∩W Ft
(
s1),

Ct = ∂Vt ∩NFt
(
tw

(
s1)),

and partition ∂Vt+1 into the components:

At+1 = ∂Vt+1 ∩NFt+1
(
dp

(
s1)),

B̃t+1 = ∂Vt+1 ∩W Ft+1
(
dp

(
s1)).

Note that some of the components may be empty.
Recalling the definition of ht+1 given in (22), we make three observations.
First, At+1 =At and

Pt,1(s) = Pt+1,1(s) for all s ∈At+1 =At . (24)

Second, let ∂Cot(s1 ) = {s′ ∈ S|s1s′ ∈ ∂Vt }. By definition, Bt = s1∂Cot(s1 ) and B̃t+1 =
dp(s1 )∂Cot(s1 ). For each σ ∈ ∂Cot(s1 ), we have s1σ ∈ Bt , dp(s1 )σ ∈ B̃t+1, and Pt,1(s1σ ) =
Pt+1(dp(s1 )σ ). It follows that{

Pt,1(s)|s ∈ Bt
} = {

Pt+1,1(s)|s ∈ B̃t+1
}

. (25)
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Third, the orderings Pt,1(s) associated with the sequences s ∈ Ct are redundant.
Indeed, because ht satisfies (19), there exists s̃ ∈ {(s1, 0), (s1, 1)} such that ht (̃s) =
ht(tw(s1 )). By (20), Oht (̃s) = Oht (tw(s1 )), and it follows that{

Pt,1(s)|s ∈ Ct
} = {

Pt,1(s)|tw
(
s1) ≺ s

}
= {

Pt,1(s)|̃s ≺ s
}

⊆ {
Pt,1(s)|s ∈ Bt

}
. (26)

It follows from (24), (25), (26) that Dt,1 = {Pt,1(s)|s ∈ ∂Vt = At ∪ Bt ∪ Ct } = {Pt+1,1(s)|
s ∈ ∂Vt+1 =At+1 ∪ B̃t+1} = Dt+1,1.

Proof of Theorem 4. Theorem 4 is trivially true if m := |A| = 2. Proceeding by in-
duction, fix m> 2 and make the induction hypothesis that Theorem 4 is true whenever
m<m. Fix A such that |A| = m, say, A = {1, � � � , m}. Let D ⊆ P be a sequentially binary
domain on A, and let α, α′ ∈ �(D) be such that x∗(α) = x∗(α′ ).

Step 1 y∗
B(α) = y∗

B(α′ ) for all B ⊂ A.
Let B ⊂A and define αB, α′

B ∈ �(DB ) as follows: for all P̃ ∈ DB,

αB(P̃ ) =
∑

P∈D:PB=P̃

α(P ) and α′
B(P̃ ) =

∑
P∈D:PB=P̃

α′(P ). (27)

Let x∗(αB ), x∗(α′
B ) be the fractional tournaments on B generated by αB, α′

B, and let
y∗(αB ), y∗(α′

B ) be the random choice functions on B generated by αB, α′
B. Since x∗(α) =

x∗(α′ ), we have x∗(αB ) = x∗(α′
B ). Since, by Lemma 1, DB is a sequentially binary domain

on B, the induction hypothesis implies that y∗(αB ) = y∗(α′
B ). This in turn implies

y∗
B(α) = y∗

B

(
α′).

Step 2 y∗
A(α) = y∗

A(α′ ).
Because D is a sequentially binary domain on A, there exists g ∈ GA such that

D = Dg. Without loss of generality, assume that g((0)) = 1 and g((1)) = 2. For any P ∈ P
and B ∈ SA, let maxB P denote the best alternative in B according to P .

Because of (15), there is a unique ordering P ∈ Dg = D such that maxAP = 1. Call this
ordering P(1). Likewise, let P(2) denote the unique ordering P ∈ D such that maxAP = 2.
Observe that for all P ∈ D,

max
A\{2}

P = 1 ⇔ P = P(1), (28)

max
A\{1}

P = 2 ⇔ P = P(2). (29)

From (28), we have

y∗
1A(α) = y∗

1A\{2}(α) = α(P(1) ), (30)

y∗
1A

(
α′) = y∗

1A\{2}

(
α′) = α′(P(1) ). (31)
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Since y∗
1A\{2}(α) = y∗

1A\{2}(α
′ ) by Step 1, we conclude that y∗

1A(α) = y∗
1A(α′ ). Likewise, it

follows from (29) that y∗
2A(α) = y∗

2A(α′ ).
To complete the proof, consider now any a ∈ A \ {1, 2}. Distinguish two cases.
Case (i) maxA\{1} P(1) �= a or maxA\{2} P(2) �= a.
Without loss of generality, suppose maxA\{1} P(1) �= a. This means that a is not ranked

second in P(1). Since P(1) is the only P ∈ D such that maxAP = 1, it follows that for every
P ∈ D,

max
A

P = a ⇔ max
A\{1}

P = a.

Therefore,

y∗
aA(α) = y∗

aA\{1}(α),

y∗
aA

(
α′) = y∗

aA\{1}

(
α′).

Since y∗
aA\{1}(α) = y∗

aA\{1}(α
′ ) by Step 1, we conclude that y∗

aA(α) = y∗
aA(α′ ).

Case (ii) maxA\{1} P(1) = a and maxA\{2} P(2) = a.
Then, for every P ∈ D, (15) implies

max
A\{1}

P = a ⇔
[

either max
A

P = a or P = P(1)

]
.

It follows that

y∗
aA(α) = y∗

aA\{1}(α) − α(P(1) ),

y∗
aA

(
α′) = y∗

aA\{1}

(
α′)− α′(P(1) ).

Using (30), (31), we obtain18

y∗
aA(α) = y∗

aA\{1}(α) − y∗
1A\{2}(α),

y∗
aA

(
α′) = y∗

aA\{1}

(
α′)− y∗

1A\{2}

(
α′),

and it follows again from Step 1 that y∗
aA(α) = y∗

aA(α′ ).

A.3 Proof of Theorem 5

Let D ⊆ P be a sequentially binary domain and let f : X∗
D → Y ∗

D be the unique admissi-
ble extension rule on X∗

D .

18Permuting 1 and 2 in the above argument leads to the equally valid formulas:

y∗
aA(α) = y∗

aA\{2}(α) − y∗
2A\{1}(α),

y∗
aA

(
α′) = y∗

aA\{2}

(
α′)− y∗

2A\{1}

(
α′).
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Step 1 f satisfies linearity on X∗
D .

The crucial observation is that the map y∗ : �(D) → Y , y∗(α) = ∑
P∈Dα(P )y∗(P ), is

an affine function. That is,

y∗(λα+ (1 − λ)α′) = λy∗(α) + (1 − λ)y∗(α′) (32)

for all α, α′ ∈ �(D) and λ ∈ [0, 1].
To prove that f : X∗

D → Y is an affine function, fix x, x′ ∈ X∗
D and λ ∈ [0, 1]. Let α, α′ ∈

�(D) be any probability distributions on D such that x = x∗(α) and x′ = x∗(α′ ). Since
y∗(α), y∗(α′ ) are admissible extensions of x, x′, and f is the unique admissible extension
rule on X∗

D ,

f (x) = y∗(α) and f
(
x′) = y∗(α′). (33)

Next, observe that λx + (1 − λ)x′ = x∗(λα + (1 − λ)α′ ). Since λα + (1 − λ)α′ ∈ �(D),
y∗(λα+ (1 −λ)α′ ) is an admissible extension of λx+ (1 −λ)x′ and, since f is the unique
admissible extension rule on X∗

D ,

f
(
λx+ (1 − λ)x′) = y∗(λα+ (1 − λ)α′). (34)

Combining (32), (33), and (34) yield f (λx+ (1 − λ)x′ ) = λf (x) + (1 − λ)f (x′ ).
Step 2 f satisfies independence of irrelevant comparisons on X∗

D .
Let x, x′ ∈ X∗

D , B ∈ SA, and assume xB = x′
B. Let α, α′ ∈ �(D) be such that x = x∗(α)

and x′ = x∗(α′ ), so that, in particular,

x∗
B(α) = x∗

B

(
α′). (35)

By definition of f ,

fB(x) = y∗
B(α) and fB

(
x′) = y∗

B

(
α′). (36)

We prove that y∗
B(α) = y∗

B(α′ ).
Let αB, α′

B ∈ �(DB ) be the probability distributions defined in (27) and let x∗(αB ),
x∗(α′

B ) be the fractional tournaments on B generated by αB, α′
B. Since for all distinct

a, b ∈ B,

x∗
ab(αB ) =

∑
P̃∈DB:aP̃b

αB(P̃ ) =
∑

P̃∈DB:aP̃b

∑
P∈D:PB=P̃

α(P ) =
∑

P∈D:aPb

α(P ) = x∗
ab(α),

we have x∗
B(α) = x∗(αB ). Likewise, x∗

B(α′ ) = x∗(α′
B ). Hence, from (35),

x∗(αB ) = x∗(α′
B

)
. (37)

Let y∗(αB ), y∗(α′
B ) be the random choice functions on B generated by αB, α′

B. Since,
by Lemma 1, DB is a sequentially binary domain on B, (37) and Theorem 4 imply

y∗(αB ) = y∗(α′
B

)
. (38)



88 Yves Sprumont Theoretical Economics 20 (2025)

Since for all a ∈ B,

y∗
aB(αB ) =

∑
P̃∈DB:

a=maxB P̃

αB(P̃ ) =
∑

P̃∈DB:
a=maxB P̃

∑
P∈D:PB=P̃

α(P ) =
∑
P∈D:

a=maxB P

α(P ) = y∗
aB(α),

we have y∗
B(α) = y∗(αB ). Likewise, y∗

B(α′ ) = y∗(α′
B ). From (38), we conclude that y∗

B(α) =
y∗
B(α′ ), as was to be proved. �

A.4 Proof of the Proposition

The proof relies on two lemmas. The first establishes a richness property of the sequen-
tially binary domains.

Lemma 2. For any sequentially binary domain D ⊆ P and any distinct a, b ∈ A, there
exist distinct P , P ′ ∈ D such that cPd ⇔ cP ′d for all {c, d} �= {a, b}.

Proof. Let D be a sequentially binary domain and let a, b ∈ A. Let g be a consistent
selection function such that D = Dg.

Step 1 There exists sab ∈ S(m−2)
0 such that Og(sab ) = {a, b}.

For any c ∈ A, define k(c) := min{k ∈ {1, � � � , m − 1}|c ∈ Og(s) for some s ∈ Sk−1}.
Without loss of generality, assume k(a) ≤ k(b). Also without loss of generality, suppose
that for all s ∈ S(m−2)

0 ,

a ∈Og(s) ⇒ g(s, 0) = a. (39)

By definition of k(a), there exists sa ∈ Sk(a)−1 such that g(sa, 0) = a. Because g satis-
fies (15),

g
(
sa, 1, 0

) = · · · = g
(
sa, 1, � � � , 1, 0︸ ︷︷ ︸

m−1

) = a. (40)

Since k(a) ≤ k(b), g(s) �= b for all s � sa. By (40) and because g satisfies (13), there exists
l ∈ {1, � � � , m− k(a)} such that

g
(
sa, 1, � � � , 1︸ ︷︷ ︸

l

) = b.

Let sab = (sa, 1, � � � , 1︸ ︷︷ ︸
l−1

). By (40), Og(sab ) = {g(sa, 1, � � � , 1, 0︸ ︷︷ ︸
l

), g(sa, 1, � � � , 1︸ ︷︷ ︸
l

)} = {a, b}.

Step 2 There exist distinct P , P ′ ∈ D such that cPd ⇔ cP ′d for all {c, d} �= {a, b}.
Let sab ∈ S(m−2)

0 be such that Og(sab ) = {a, b}, say, g(sab, 0) = a and g(sab, 1) = b.
Since g satisfies (15), a ∈Og(sab, 1) and b ∈Og(sab, 0). Without loss, assume

g
(
sab, 1, 0

) = a, g
(
sab, 0, 1

) = b. (41)

Let k(a, b) be the length of the sequences (sab, 1, 0) and (sab, 0, 1). For any P =
a1a2 · · ·am ∈ D and k ∈ {2, � � � , m}, let Tk(P ) := {am−k+1, � � � , am} denote the set contain-
ing the k lowest-ranked alternatives in P , the “k-tail” of P .
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Fix s, s′ ∈ Sm−1 such that (sab, 1, 0) � s, (sab, 0, 1) � s′, and write Pg(s) = P , Pg(s′ ) =
P ′. By definition, P �= P ′, Tk(a,b)(P ) = Tk(a,b)(P

′ ) =: Tk(a,b), and cPd ⇔ cP ′d for all
{c, d} ⊆ Tk(a,b) such that {c, d} �= {a, b}. If |k(a, b)| =m, we are done.

If |k(a, b)| < m, a simple induction completes the proof. Since g(W P(sab, 1, 0)) =
g(W P(sab, 0, 1)), condition (16) implies

Og
(
sab, 0, 1

) =Og
(
sab, 1, 0

)
.

Pick c ∈ Og(sab, 0, 1) = Og(sab, 1, 0). Without loss, assume g(sab, 0, 1, 0) = g(sab, 1, 0,
0) = c. For any s, s′ ∈ Sm−1 such that (sab, 0, 1) � s and (sab, 1, 0) � s′, write Pg(s) = P ,
Pg(s′ ) = P ′, and observe that Tk(a,b)+1(P ) = Tk(a,b)+1(P ′ ) =: Tk(a,b)+1, and cPd ⇔ cP ′d
for all {c, d} ⊆ Tk(a,b)+1 such that {c, d} �= {a, b}. Repeating this argument eventually pro-
duces distinct P , P ′ ∈ D such that cPd ⇔ cP ′d for all {c, d} �= {a, b}.

The next lemma requires additional terminology. Recall that for any P ∈ P and B ∈
SA, PB denotes the restriction of P to B. Call B a triple if |B| = 3. Following Puppe and
Slinko (2022), call D ⊆ P an Arrow single-peaked (ASP) domain if DB := {PB|P ∈ D} is a
single-peaked domain for every triple B.

Lemma 3. Every sequentially binary domain is a maximal ASP domain.

Proof. Let D ⊆ P be a sequentially binary domain. For any triple B ∈ SA, Lemma 1
implies that DB is a sequentially binary domain on B, hence (as noted in the paragraph
following Definition 3), a (maximal) single-peaked domain on B. It follows that D is an
ASP domain. Slinko (2019) shows that all maximal ASP domains have cardinality 2m−1.
Since |D| = 2m−1, D is a maximal ASP domain.

Proof of the Proposition. Let D be a sequentially binary domain and let D ⊂ D′ ⊆
P . By Lemma 3, D is a maximal ASP domain. Since D ⊂ D′, D′ is not an ASP domain.
Thus, there exists a triple B ⊆ A such that DB is a (maximal) single-peaked domain on
B and DB ⊂ D′

B. Choose Q0 ∈ D′ \D such that Q0
B ∈ D′

B \DB. Without loss of generality,
suppose that B = {1, 2, 3} and

D{1,2,3} = {123, 213, 231, 321}, Q0
{1,2,3} = 132.

Let P0 ∈ D be such that P0
{1,2,3} = 123. Since P0 �= Q0, there exist K ≥ 1 pairs of alter-

natives {a1, b1}, � � � , {aK , bK } such that (i) akQ0bkP0ak if k ∈ {1, � � � , K}, and (ii) aP0b ⇔
aQ0b if {a, b} �= {ak, bk} for all k ∈ {1, � � � , K}.

For each k ∈ {1, � � � , K}, Lemma 2 ensures that there exist Pk, Qk ∈ D such that
akPkbkQkak and aPkb ⇔ aQkb if {a, b} �= {ak, bk}. Define the probability distributions
α, α′ ∈ �(D′ ) by

α(P ) = 1
K + 1

∣∣{k ∈ {0, 1, � � � , K}|Pk = P
}∣∣,

α′(P ) = 1
K + 1

∣∣{k ∈ {0, 1, � � � , K}|Qk = P
}∣∣

for all P ∈D′.
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It is straightforward to check that x∗(α) = x∗(α′ ). To complete the proof, we show
that y∗(α) �= y∗(α′ ). Since P0

{1,2,3} = 123 and Q0
{1,2,3} = 132, (i) there exists k ∈ {1, � � � , K}

such that {ak, bk} = {2, 3} and (ii) {ak, bk} �= {1, 2}, {1, 3} for all k ∈ {1, � � � , K}. With-
out loss of generality, assume {a1, b1} = {2, 3}. Note that Pk

{1,2,3} = Qk
{1,2,3} for all k ∈

{2, � � � , K}. Thus,

max
{1,2,3}

P0 = 1 = max
{1,2,3}

Q0,

max
{1,2,3}

P1 = 2 �= 3 = max
{1,2,3}

Q1,

max
{1,2,3}

Pk = max
{1,2,3}

Qk for all k ∈ {2, � � � , K}.

It follows that y∗
2{1,2,3}(α) < y∗

2{1,2,3}(α
′ ) and y∗

3{1,2,3}(α) > y∗
3{1,2,3}(α

′ ).
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