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Abstract: This paper proves the existence of a non-stationary equilibrium in
the canonical search-and-matching model with heterogeneous agents. Non-
stationarity entails that the number and characteristics of unmatched agents
evolve endogenously over time. An equilibrium exists under minimal regularity
conditions and for both paradigms considered in the literature: transferable and
non-transferable utility. To address potential discontinuities in match opportuni-
ties across types, our analysis introduces a generalized Schauder fixed-point the-
orem suitable for models with discontinuous value functions.
KEYWORDS. equilibrium existence, search-and-matching, non-stationary search,
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1. INTRODUCTION

This paper builds tools for proving the existence of a non-stationary equilibrium in dy-
namic heterogeneous agent models, where the aggregate state evolves deterministically
over time. Our focus is the canonical search-and-matching model. This model has been
widely used to study productive and social interactions.1 As in the pioneering work
by Shimer and Smith (2000), a continuum of heterogeneous agents engage in a time-
consuming and haphazard search for one another and exit the search pool upon forming
a match. Following the two dominant paradigms in the literature, match payoffs can be
transferable (TU), i.e., there is Nash bargaining over match surplus, or non-transferable
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(NTU), i.e., match payoffs are exogenously given. In this model, fluctuations arise natu-
rally, e.g., due to a seasonal thick market externality, gradual market clearing or the busi-
ness cycle. Known equilibrium existence results, with the exception of Manea (2017a),
apply however only in the stylized stationary environment where entry and exit into the
search pool are balanced at all moments in time (Burdett and Coles (1997), Shimer and
Smith (2000), Smith (2006), Lauermann et al. (2020)).2,3

A non-stationary equilibrium resolves a complex feedback loop between a time-
moving aggregate state and individual decisions. In the search-and-matching economy,
the endogenous variables are: the distribution of agents’ characteristics in the search
pool, agents’ value-of-search, and thereby determined matching decisions and trans-
fers. Aggregate population dynamics and the individual decision problem are coupled;
when the search pool evolves and therefore, future match prospects evolve, so do opti-
mal matching decisions, and hence the rate at which agents exit the search pool. The in-
terplay between aggregate dynamics and the individual decision problem is shared with
virtually all dynamic general equilibrium models under rational expectations. Lasry and
Lions (2007) refer to this class of models as mean field games.

We prove equilibrium existence in three steps. As in general equilibrium theory, ex-
istence will depend on the application of a topological fixed point theorem. In Section 2,
we establish a non-trivial adaptation of the Schauder (1930) fixed point theorem, which
imposes few constraints on the model. This theorem translates abstract concepts, no-
tably compactness in function spaces, into premises that can be interpreted economi-
cally. In Section 5.1, we construct a value-of-search operator whose fixed points corre-
spond to a non-stationary equilibrium. In Sections 5.2 and 5.3, we prove that the oper-
ator satisfies the premises of our fixed point theorem. To that end, we construct bounds
on the value-of-search across individuals that are derived from two revealed preferences
arguments.

We first establish a fixed point theorem (Theorem 1). Due to its potential appeal
to other models, we present it in a self-contained section. The domain of this fixed
point theorem is the space of tuples (F 1, ..., FN ) ∈ FN of measurable mappings Fn :

[0,1]×R+ → [0,1] endowed with a semimetric. In search-and-matching models, N = 2

is the number of populations, e.g., workers and firms, and Fn(x, t) is the value-of-search
of agent type x from population n at time t. We prove that an operatorH :FN →FN ad-
mits a fixed point if it is (i) continuous with respect to the semimetric, and (ii) maps into
a function space whose (two-dimensional) total variation norm is uniformly bounded.
Premise (i) is the familiar continuity premise from Schauder. Both premises are suffi-
ciently general to allow the value function to fluctuate endogenously over time and to
be discontinuous with respect to time and type.4

2Relatedly, Lauermann and Nöldeke (2015) and Manea (2017b) prove the existence of a stationary equi-
librium when there are finitely many types.

3Manea (2017a) proves existence in the non-stationary TU (but not NTU) search-and-matching model
when there are finitely many types and time is discrete. The present paper deals with a continuum of types
and continuous time (in both the TU and NTU paradigm).

4In NTU search-and-matching models, it is known that block segregation (see McNamara and Collins
(1990), Smith (2006) and references therein) prohibits continuity of the value-of-search: agents can cluster
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The key step in proving our fixed point theorem is the construction of a sequence of
approximating fixed point operators. By mapping any given value function profile into
a smaller function space, the space of k-Lipschitz functions, the approximating fixed
point operator is guaranteed to be compact-valued. Since the operator is also contin-
uous due to Premise (i), Schauder’s theorem guarantees the existence of a fixed point.
This fixed point corresponds to an approximate equilibrium with vanishing approxi-
mating error as we increase the constant k. We then prove that the sequence of approxi-
mating equilibria converges. This is the consequence of a generalized multidimensional
(time and type) Helly selection theorem which establishes that Premise (ii) implies se-
quential compactness of H(FN ).5

Second, we construct a value-of-search operator whose fixed points correspond to
a non-stationary equilibrium. Under this operator, agents take others’ value-of-search,
hence matching decisions, as given to compute their own discounted expected future
match payoff. The operator can be interpreted as the out-of-equilibrium value-of-
search in that the value-of-search ascribed to other agents of equal type need not co-
incide with their own.

Third, we prove that the operator satisfies the premises of our fixed point theorem:
continuity and uniformly bounded variation. This holds true for general primitives of
the economy. The central assumptions are Lipschitz continuity and linear boundedness
of entry and meeting rates. In particular, we allow both rates to depend generally on time
and the current size and composition of the search pool, which relaxes assumptions
considered in the literature.

We circumvent the tractability issues that come with non-stationary dynamics by
constructing tight bounds on the difference in the value-of-search between two agents.
Those bounds follow from two revealed preference arguments (NTU and TU) coined
mimicking arguments whose underlying idea is to let one agent replicate someone else’s
matching decisions. In the TU paradigm, we establish bounds in terms of time-invariant
output rather than time-varying payoffs by employing an inductive reasoning over the
mimicking argument. These bounds are also key to studying sorting in non-stationary
equilibrium (see Bonneton and Sandmann (2023) (NTU), and Bonneton and Sandmann
(2021) (TU)).

Related Work This paper contributes to the theoretical literature on search and match-
ing, see Chade et al. (2017) for an excellent review.

With the exception of Manea (2017a), all equilibrium existence results derive con-
ditions on the primitives of the model for which a stationary equilibrium exists (Bur-
dett and Coles (1997), Shimer and Smith (2000), Smith (2006), Lauermann and Nöldeke
(2015), Manea (2017b) and Lauermann et al. (2020)). Many economic phenomena,

according to classes so that any two agents match upon meeting if and only if they belong to the same class.
Similarly, discontinuities in the value function across types arise naturally, absent prices, under informa-
tional asymmetries. For example, Bardhi et al. (2023) show that, when employers learn about workers’ skills
by observing “bad news”, workers who are almost equal ex-ante have very different expected career paths.

5Relatedly, Smith (2006) makes use of the Helly selection theorem in dimension one (type) to establish
sequential compactness of the value function space.

https://econtheory.org


4 Submitted to Theoretical Economics

however, are inherently non-stationary,6 including time-variant entry as in a seasonal

housing market (see Ngai and Tenreyro (2014)), and a gradually clearing job market (by

which, e.g., academic economists have organized the junior job market for Ph.D. hires).

Manea (2017a) proves equilibrium existence in the TU non-stationary search-and-

matching model when there are finitely many types and time is discrete. In line with

the literature on assortative matching, we consider continuous time and a continuum

of types. Continuum-type models ease the analysis of sorting (Chade et al. (2017))

and continuous-time models avoid pathological coordination failures across periods

with instantaneous first-round exit by all agents (as reported in Damiano et al. (2005)).

One reason to focus on finite-type models is technical simplicity; Tychonoff guarantees

the compactness of the (countably finite) equilibrium domain. Our proof, notably the

herein developed mimicking argument, reveals that the TU paradigm with a continuum

of types poses no additional conceptual difficulties (cf. Remark 3). In the NTU paradigm,

by contrast, continuous model primitives alone do not guarantee that the equilibrium

value-of-search is continuous in types. Herein introduced proof techniques allow us to

establish equilibrium existence regardless and encompass discontinuous model primi-

tives.

Questioning what happens outside the steady state is at the heart of burgeoning lit-

erature at the intersection of continuous-time macroeconomics and mean field games.

Yet for many models of interest no one even knows whether an equilibrium exists when

the economy is not assumed to be in the steady state (see Achdou et al. (2014)). Diffi-

culties include the fact that it is usually impossible to characterize the value-of-search

in closed form. Smith (2011) quipped that “the simplest non-stationary models can be

notoriously intractable.”

Our fixed point theorem relates to Jovanovic and Rosenthal (1988) who also pro-

pose a topological approach7 to prove the existence of non-stationary (and station-

ary) equilibria in a general class of models coined anonymous games. These can be

6One critical insight is that aggregate fluctuations can amplify idiosyncratic risk. In a non-stationary
Aiyagari (1994) model (see Achdou et al. (2022)), a looming rise in interest rates makes consecutive nega-
tive income shocks more costly, contributing to greater precautionary savings. In a growth model, the an-
ticipation of future industry consolidation can dampen investment in long-run quality in favor of greater
short-term intangible investment (see De Ridder (2024)). In a companion paper (see Bonneton and Sand-
mann (2023)), we show how the downside risk of future acceptance of an undesirable match in a depleted
search pool can impede contemporaneous positive assortative matching.

7We say that an equilibrium existence proof is topological if it uses a fixed point theorem that endows
its domain with a topology, such as Brouwer’s fixed point theorem or its generalizations. An example of a
non-topological fixed point theorem is Tarski.
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viewed as mean field games in discrete time.8 Observe however that their critical as-
sumption on the continuity of individual expected utilities do not hold in search-and-
matching models; in two-sided search-and-matching models pooling of match accep-
tance decisions in one population can give rise to discontinuities in the other popula-
tion’s match prospects.9,10 Discontinuities have been extensively explored in the context
of NTU block segregation where the unique steady state equilibrium exhibits a discon-
tinuous value-of-search profile (refer to McNamara and Collins (1990), Smith (2006) and
references therein). More generally, discontinuities arise when a non-negligible set of
agents adopts identical match acceptance decisions, leading to a sharp drop in match
prospects for the marginally rejected agents. A scenario of agents endowed with identi-
cal preferences and match opportunities provides the simplest example thereof.

Recent work by Balbus et al. (2022) (on supermodular anonymous games) and Pröhl
(2023) (on the non-stationary Aiyagari (1994) model with aggregate uncertainty) has es-
tablished non-topological existence results that rely on monotonicity conditions. Where
such monotonicity exists, equilibria can be ranked or are unique. The interactive nature
of search-and-matching models rule out their structural assumptions.11,12

The mean field game literature has made strides as of late by allowing for aggregate
uncertainty under the probabilistic approach (see Carmona and Delarue (2018) and Bi-
lal (2023)). Mathematically, aggregate noise is a convenient tool, for it smoothes the
value function across states, allowing the researcher to leverage PDE techniques. Con-
ceptually, our approach is different since, like in the steady state, the aggregate dynamics
we consider are, by construction, deterministic.

2. A FIXED POINT THEOREM FOR NON-STATIONARY MODELS

We first develop a fixed point theorem that will help us prove the existence of a non-
stationary equilibrium of the search-and-matching economy. It is a non-trivial adap-
tation of the well-known Schauder-Tychonoff fixed point theorem (Schauder (1930) -
Tychonoff (1935)). Due to its potential appeal for proving existence in other models, this
section is self-contained.

8Bergin and Bernhardt (1995) investigate the complementary case where there is aggregate uncertainty.
9Identify unmatched agents’ utilities (labeled reward function in Jovanovic and Rosenthal (1988)) with

the expected flow payoff of mutually acceptable matches weighted by the meeting rate, and equate action
profiles with either match indicators or value-of-search profiles. Then utilities can impossibly be continu-
ous at action profiles where a non-negligible mass of agents is indifferent between accepting and rejecting
the same type.

10Continuous value function profiles naturally arise in Bewley-style economies where individual agents
face uninsurable income risk. In particular, Miao (2006) Lemma 1 (cf. Cheridito and Sagredo (2016) and
further qualifying assumptions in Cao (2020)) proves that individual saving and consumption decisions are
continuous in asset holdings. The prevalence of prices aggregating agent heterogeneity is central for this
result.

11Supermodularity posits incremental and monotone effect of others’ actions on expected utility. Super-
modularity is not satisfied in our context where there are threshold acceptance strategies in the same way
that Bertrand competition cannot be modelled as a supermodular game.

12The Bewley-style Aiyagari (1994) model builds on a sufficient statistic approach whereby individual
decisions aggregate into a single variable such as the interest rate. Match acceptance decisions of hetero-
geneous agents do not admit such aggregation.
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Our theorem applies to continuous-time, infinite-horizon models in which a group
of heterogeneous agents, as described by a type x ∈ [0,1], take actions that affect others
through the aggregate only. This class of models is sometimes referred to as anonymous
or mean field games. Within this class of models, our fixed point theorem is sufficiently
general to allow the value function to fluctuate endogenously over time and to be dis-
continuous with respect to time and type. It is therefore relevant in models that dispense
with the steady state assumption or admit pooling behavior. Note that existing appli-
cations of fixed point theorems in economic models (see for instance Stokey and Lucas
(1989)) often rely on the Arzelà-Ascoli theorem, which explicitly rules out discontinuities
in the value function.

2.1 Preliminaries and Statement of the Theorem

We would like to establish the existence of a fixed point of the operatorH = (H1, ...,HN ) :

FN →FN where F and FN are the spaces of measurable mappings [0,1]×R+ → [0,1]

and [0,1] × R+ → [0,1]N respectively. In more detail, a fixed point is a mapping

F = (F
1
, ..., F

N
) ∈ FN such that H[F ] = F .

To state the theorem we introduce two notions of distance. First, the continuity
premise of our fixed point theorem requires the following operator to measure the “dis-
tance" between functions.

DEFINITION 1 (seminorm). Define, for all functions F = (F 1, ..., FN ) ∈ FN ,

||F ||= max
n∈{1,...,N}

∞∫
0

1∫
0

e−t
∣∣Fn(x, t)

∣∣dxdt.
The mapping (F, F̄ ) 7→ ||F − F̄ || is called a semimetric because it is induced by a

seminorm. Following this terminology, we call || · || a seminorm.
Second, we introduce the total variation norm for mappings in F . As we shall see,

if a set of functions is uniformly bounded in the total variation norm, then it is sequen-
tially compact. Our focus on two-dimensional functions is a special case of the general
definition provided by Idczak and Walczak (1994) and Leonov (1996).13

DEFINITION 2 (total variation norm). The total variation norm for functions Fn ∈ F and
arbitrary bounded time interval [t, t] is given by

TV
(
Fn, [0,1]× [t, t]

)
= V1

0

(
Fn(·, t)

)
+ Vt

t

(
Fn(0, ·)

)
+ V2

(
Fn, [0,1]× [t, t]

)
with

V1
0

(
Fn(·, t0)

)
= sup

P

m∑
i=1

∣∣Fn(xi, t0)− Fn(xi−1, t0)
∣∣

13Subsequent work by Chistyakov and Tretyachenko (2010) extends the total variation norm to more
abstract spaces.
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where P is a partition of [0,1], i.e. 0 = x0 < x1 < ... < xm = 1,

Vt
t

(
Fn(0, ·)

)
= sup

P

m∑
i=1

∣∣Fn(0, ti)− Fn(0, ti−1)
∣∣

where P is a partition of [t, t], i.e. t= t0 < t1 < ... < tm = t,

V2

(
Fn, [0,1]× [t, t]

)
=sup

P

m∑
i=1

∣∣Fn(xi, ti)− Fn(xi, ti−1)− Fn(xi−1, ti) + Fn(xi−1, ti−1)
∣∣

where P is a discrete path in [0,1]× [t, t], s.t. t= t0 < t1 < ... < tm = t

and 0 =x0 < x1 < ... < xm = 1.

The total variation norm in dimension two is the sum of the variations, i.e., "up and
down" movements, of a function Fn along three paths within the square [0,1] × [t, t].
These paths start from the origin point (0, t) and move towards the three remaining ex-
tremal points of the square, capturing variations along the boundary and the interior.14

We can now state our fixed point theorem:

THEOREM 1. Suppose that H :FN →FN satisfies

(i) for all F = (F
1
, ..., F

N
) ∈ FN and ϵ > 0 there exists δ > 0 such that

∣∣∣∣H[F ]−H[F ]
∣∣∣∣< ϵ

for all F = (F 1, ..., FN ) ∈ FN such that
∣∣∣∣F − F

∣∣∣∣< δ;
(ii) ∀T > 0 ∃C > 0 such that ∀n ∈ {1, ...,N} : TV

(
Hn[F ], [0,1]× [0, T ]

)
<C for all F ∈ FN .

Then H admits a fixed point.

We will refer to condition (i) as continuity and (ii) as uniformly bounded variation.15

2.2 Proof of the Fixed Point Theorem

Outline of the proof: we construct a sequence of operators that approximate the fixed
point operator H (Step 1). Each approximate fixed point operator will satisfy all the
assumptions of the Schauder fixed point theorem (Step 0, Step 2) and hence admits a
fixed point (Step 2). We then show that the sequence of approximate fixed point admits
a convergent subsequence (Step 3). To conclude, we prove that H maps the convergent
subsequence’s limit point into a fixed point of H (Step 4).

To begin with, endow F and FN with the discounted supremum metric. Discount-
ing is what helps us deal with an infinite horizon.

14To establish a Helly-type selection theorem whereby a sequence of functions (F(k))k∈N defined on
[0,1]× [t, t] of uniformly bounded variation admits a pointwise convergent subsequence, the inclusion of

boundary variations is crucial. To see this, consider F(k)(x, t) =

{
sin(kx) if t= t

0 otherwise.
Thus defined se-

quence (F(k))k∈N does not admit a pointwise convergent subsequence, despite V2(F(k), [0,1]× [t, t]) = 1.
This shows that uniform bounded variation on the interior only does not guarantee the existence of a point-
wise convergent subsequence.

15Also note that the domain FN is convex.
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DEFINITION 3 (discounted sup metric). The discounted sup metric for functions F =

(F 1, ..., FN ) ∈ FN and F = (F
1
, ..., F

N
) ∈ FN is given by

dN (F,F ) = max
n∈{1,...,N}

d(Fn, F
n
) = max

n∈{1,...,N}
sup
x,t

e−t
∣∣Fn(x, t)− F

n
(x, t)

∣∣.
Step 0 (Preliminary): A Compact Set of Functions To apply Schauder’s fixed point the-
orem, we require that the fixed point operator maps into a compact set of functions.
As a preliminary step, we show that the set of k-Lipschitz functions is compact. (Note
however that functions in the image ofH need not be k-Lipschitz, let alone continuous.)

A function Fm : [0,1]×R+ → [0,1] is k-Lipschitz if for any (x, t), (y, r) ∈ [0,1]×R+∣∣Fm(x, t)− Fm(y, r)
∣∣≤ k ·max

{
|x− y|, |t− r|

}
.

Denote F(k) ⊂F the (convex) subset of k-Lipschitz functions.

PROPOSITION 1. (F(k),d) is compact.

The proof of this Proposition mirrors that of the Arzelà-Ascoli theorem and is de-
ferred to Appendix A.1.16

Step 1: Construction of the Approximate Fixed Point Operator We construct an approx-
imate fixed point operator that is continuous and maps into the set of k-Lipschitz func-
tions. We achieve this via convolution with approximate identity functions. To handle
the integration at the boundary points x ∈ {0,1} and t = 0, where the convolution op-
eration naturally extends beyond the domain [0,1] × [0,∞), we extend the support of
functions in F to [−1,2]× [−1,∞). This extension ensures that the convolution is well-
defined across the entire original domain.

Denote the approximate operator Hm
(k) : F

N → F , and define, for any (x0, t0) ∈
[0,1]×R+,

Hm
(k)[F ](x0, t0) =

2∫
−1

∞∫
−1

Ĥm[F ](x, t)δ(k)(x0 − x, t0 − t)dtdx

where, first, Ĥm[F ] is the extension ofHm[F ] ∈ F to a mapping [−1,2]× [−1,∞)→ [0,1],

Ĥm[F ](x, t) =


Hm[F ](|x|, |t|) if − 1≤ x < 0

Hm[F ](x, |t|) if 0≤ x≤ 1

Hm[F ](2− x, |t|) if 1< x≤ 2,

and, secondly, for b(k) = 4/k and k ≥ 4 we define

δ(k)(x, t) =
1

(b(k))
2 if (x, t) ∈B(k)(0)≡

{
(x′, t′) ∈R2 : max{|x′|, |t′|} ≤

b(k)

2

}
, zero otherwise.

16The classical version of the Arzelà-Ascoli theorem (see Munkres (2000), Theorem 45.4) does not apply
here directly because the domain of the functions in F(k) is unbounded.
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Intuitively, convolution with a sufficiently dispersed approximate identity function
smooths out a bounded function by averaging its values over a larger neighborhood. Our
approximate identity function assigns equal weights to every point within its support.
Consequently, the difference in the operator’s value between two points is bounded by
the size of the difference in the integration regions. Lipschitz continuity follows because
this difference is at most proportional to the distance between the two points, as illus-
trated in Figure 2. At this point, it is immaterial whether the original functionHm[F ] ∈ F
is of uniformly bounded variation or not.

Step 2: Properties of the Approximate Fixed Point Operator We now show that the ap-
proximate fixed point operator satisfies all the necessary properties that allow us to ap-
ply the Schauder fixed point theorem: compactness of its image and continuity.

LEMMA 1. Hm
(k)[F

N ]⊆F(k)

LEMMA 2. Hm
(k) : (F

N ,dN )→ (F ,d) is continuous.

The proof of both Lemmata is deferred to Appendix A.2.

PROPOSITION 2. H(k) = (H1
(k), ...,H

N
(k)) :F

N →FN has a fixed point F ∗
(k).

This Proposition is an application of the Schauder fixed point theorem.

PROOF. First observe that (FN ,dN ) is a complete metric space (see Theorem 43.5. in
Munkres (2000)) and that (FN

(k),d
N ) is a subset of this space. Moreover, observe that

the metric dN satisfies the three axioms posited by Schauder (1930).17 Second, since
(FN

(k),d
N ) is the finite-dimensional product of compact sets (Proposition 1), it is com-

pact. It is also closed (since FN
(k) is compact) and convex. Finally, continuity of the

component operator Hn
(k) (Lemma 2) on the larger space FN establishes continuity of

H(k) = (H1
(k), ...,H

N
(k)) : (F

N
(k),d

N ) → (FN
(k),d

N ). Then the Schauder fixed point theo-
rem (see Schauder (1930), Satz I) asserts that if the continuous operator H(k) maps the
convex, closed and compact set FN

(k) into itself, then there exists a fixed point F ∗
(k), i.e.,

H(k)[F
∗
(k)] = F ∗

(k).

Step 3: Existence of a Convergent Subsequence of Approximate Fixed Points By consider-
ing all k ∈N, Proposition 2 establishes that there exists a sequence of approximate fixed
points (F ∗

(k))k∈N. We now show that this sequence admits a convergent subsequence.

PROPOSITION 3. The fixed points (F ∗
(k))k∈N admit an accumulation pointF ∗ in (FN ,dN ).

17Those axioms are 1◦ dN (F, F̄ ) = dN (F − F̄ ,0), 2◦ lim
n→∞

dN (F(n), F̄ ) = lim
n→∞

dN (G(n), Ḡ) = 0 im-

plies lim
n→∞

dN (F(n)+G(n), F̄ + Ḡ) = 0 and 3◦ for {λn} a sequence of real numbers and {F(n)} a sequence

in FN , lim
n→∞

λn = λ, lim
n→∞

dN (F(n), F̄ ) = 0 implies lim
n→∞

dN (λnF(n), λF̄ ) = 0. Those axioms are naturally

satisfied if the metric is induced by a norm (which is prohibited by discounting in our case).
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This follows from a higher-dimensional Helly-type selection theorem. It is here that
we utilize our assumption—immaterial to the preceding results—that the total variation
of functions Fn ∈ F admits a uniform bound.

PROOF. Fix arbitrary n ∈ {1, ...N}. Idczak and Walczak (1994) and Leonov (1996) (The-
orem 4) prove that if all the elements (indexed by k ∈ N) of a sequence of functions
(Fn

(k))k∈N: Fn
(k) ∈ F satisfy TV

(
Fn
(k), [0,1]× [0, T ]

)
< C for some constant C , then the se-

quence admits a subsequence of functions that converges pointwise on [0,1]× [0, T ] to a
function with the same property. Assumption (ii) of the theorem asserts the existence
of such a uniform bound C for all Hn[F ] ∈ F where n ∈ {1, ...,N} and F ∈ FN . Since
the uniform bound on the total variation will be preserved under convolution, such
bound also obtains for all Hn

(k)[F ] ∈ F where k ∈N. In particular, this applies for the se-

quence (Hn
(k)[F

∗
(k)])k∈N = (F ∗,n

(k)
)k∈N. Then, for all T > 0 and n= 1, the Helly-type selec-

tion theorem ensures the existence of a pointwise convergent subsequence (F ∗,1
(kℓ)

)k∈N

on [0,1]× [0, T ] where each F ∗,1
(kℓ)

∈ F . Then, iterating over n ensures the existence of a

pointwise convergent subsequence (F ∗
(kℓ)

)k∈N in [0,1]× [0, T ] where F ∗
(kℓ)

∈ FN . Follow-
ing an identical reasoning, we can find a subsequence of the subsequence which con-
verges pointwise in [0,1]× [0, T +1]. Proceeding by induction then establishes pointwise
convergence in [0,1]× [0,∞); we denote F ∗ ∈ FN the limit point.

Step 4: Conclusion The preceding steps established the existence of a convergent sub-
sequence of approximate fixed points. Proposition 4 asserts that the image of this limit
is a fixed point of H , which concludes the proof of Theorem 1.

PROPOSITION 4. H[F ∗] is a fixed point of H :FN →FN .

The proof of this Proposition is deferred to Appendix A.3.

Remark:18 Theorem 1 can be generalized to restrict attention to closed, convex sub-
sets of measurable functions. Formally, consider the restriction to a subset of functions
C ⊆ FN such that H maps C into itself, i.e., H[C]⊆ C. And maintain that H satisfies the
theorem’s Premises (i) and (ii) where FN is now replaced by C. Then introduce the ad-
ditional assumption that C ⊆ FN is convex and closed under dN . Then the theorem’s
conclusion can be strengthened: H admits a fixed point in C. The proof is as follows:

PROOF. Define C(k) ⊆ FN
(k) the set of functions derived via convolution of functions

F ∈ C with the approximate identity function δ(k) as defined in Step 1. To simplify the
notation, we write F ⋆ δ(k). Then C(k) = {F(k) ∈ FN |F(k) = F ⋆ δ(k) for some F ∈ C}. We
note that C(k) inherits from C convexity and closedness. It follows that (C(k),dN ) is com-
pact (because the closed subset of a compact space, here (FN

(k),d
N ) as shown in Propo-

sition 1, is compact). Then our application of Schauder’s fixed point theorem in Proposi-
tion 2 applies to the convex, closed and compact set C(k). Hence, as established in Step 2,

18We thank the co-editor for suggesting this generalization.

https://econtheory.org


Submitted to Theoretical Economics Existence of a Non-Stationary Equilibrium 11

there exists a sequence of approximate fixed points (F ∗
(k))k∈N where F ∗

(k) ∈ C(k). And ac-
cording to Step 3, Proposition 3, this sequence admits an accumulation point, denoted
F ∗. Therefore, also the sequence (F̃ ∗

(k))k∈N in C where F ∗
(k) = F̃ ∗

(k) ⋆ δ(k) admits F ∗ as

an accumulation point under dN . Since (C,dN ) is closed, it follows that F ∗ ∈ C. Then
Proposition 4 allows us to conclude.

3. THE SEARCH-AND-MATCHING ECONOMY

This section presents the continuous-time, infinite-horizon search-and-matching model.
We first describe the set-up. We then lay out the assumptions that we rely on to prove
the existence of a non-stationary equilibrium. The formal definition of equilibrium and
the proof of its existence are deferred to later sections.

3.1 Set-up

Agents engage in time-consuming and random search for potential matches. When two
agents meet, they observe each other’s type. If both agents give their consent, they per-
manently exit the search pool and consume their respective match payoffs. Otherwise
they continue waiting for a more suitable partner. Each agent maximizes their expected
present value of payoffs, discounted at rate ρ > 0.

Agents There are two distinct populations denotedX and Y , each containing a contin-
uum of agents that seek to match with someone from the other population. Each agent
is characterized by a type which belongs to the unit interval [0,1]. We usually denote by
x a type of an agent from populationX , and y a type of an agent from population Y . The
distribution of types in the search pool at time t is characterized by a pair of functions
µt = (µXt , µ

Y
t ), such that for any U ⊆ [0,1], the mass of types x ∈ U in the search pool is∫

U µ
X
t (x)dx. The initial distribution at time 0 is given by some uniformly bounded µ0.

Note: We typically construct the value-of-search and related concepts from the perspec-
tive of population X ; symmetric constructions apply to agent types y from population
Y . Furthermore, we impose that all functions introduced are Lebesgue measurable.

Search Over time agents randomly meet each other. Meetings follow an (inhomoge-
neous) Poisson point process. Such a process is characterized by the time-variant (Pois-
son) meeting rate λ= (λX , λY ) where λXt (y|x) is agent type x’s time-t meeting rate with
an agent type y. In the simplest case, the meeting rate is proportional to the search pool
population so that λXt (y|x) = µYt (y), as in Shimer and Smith (2000) and Smith (2006).
More generally, we take λ to be a function of the underlying state variable µt and time
t. Then the subindex t is short-hand for dependence on both the prevailing time t and
state µt, i.e., λXt (y|x)≡ λX(t, µt)(y|x).

The meeting rates λXt and λYt are not arbitrary but intricately linked. Coherence of
the meeting rate requires that the number of meetings of agent types x with agent types
y must be equal to the number of meetings of agent types y with agent types x:

λXt (y|x)µXt (x) = λYt (x|y)µYt (y).
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Population Dynamics Population dynamics are governed by entry and exit. Any two
agents x and y of opposite populations that meet and mutually consent to form a match
exit the search pool. The rate at which an individual agent type x matches and exits the
market at time t—the hazard rate—is

1∫
0

mt(x, y)λ
X
t (y|x)dy;

mt(x, y) ∈ {0,1}, determined in equilibrium, denotes the time-t match indicator. This
is equal to one if agent types x and y match upon meeting and zero otherwise. Entry
is characterized by a time-variant rate η = (ηX , ηY ). We take η to be a function of the
underlying state variable µt and time t. Then ηXt (x)≡ ηX(t, µt)(x) is agent type x’s time-
t entry rate.

The economy can be non-stationary in that entry and exit need not be equal, leading
to a time-variant state µt = (µXt , µ

Y
t ).19 The population dynamics are given by

µXt+h(x) = µXt (x) +

t+h∫
t

{
− µXτ (x)

1∫
0

λXτ (y|x)mτ (x, y)dy+ ηXτ (x)

}
dτ. (1)

Value-of-Search Any given agent’s experience in the search pool is characterized by
random encounters with other agents. Presented with a match opportunity, an agent
must weigh the immediate match payoff against the option value-of-search, the dis-
counted expected future match payoff were one to continue one’s search. Denote agent
type x’s time-t value-of-search V X

t (x) and πXt (y|x) the one-time match payoff when
matching with y. Naturally, the optimal matching decision is to accept to match with
another agent whenever the payoff exceeds the option value-of-search:

πXt (y|x)≥ V X
t (x). (OS)

Knowledge of the value-of-search uniquely determines the match indicator:

mt(x, y) =

{
1 if πXt (y|x)≥ V X

t (x) and πYt (x|y)≥ V Y
t (y),

0 otherwise.
(2)

Our definition of the value-of-search is recursive: agents form beliefs about future match
probabilities and payoffs. Future match probabilities depend jointly on the Poisson rate
λ and match outcomes upon meeting m—which depends on the value-of-search. Re-
flecting optimality of individual strategies, we define the value-of-search to be the solu-
tion to

V X
t (x) =

∞∫
t

e−ρ(τ−t)

1∫
0

πXτ (y|x)pXt,τ (y|x)dy dτ, (3)

19Our formulation is that of a system of integral equations rather than differential equations, because
the left- and right time derivative of µX

t (x) do not always coincide as will be the case if z 7→
∫ z
0 mt(x, y)dy

is discontinuous.
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where pXt,τ (y|x) is the density of future matches with y at time τ conditional on x being
unmatched at time t. This is a standard object and is characterized by the matching rate
(see Appendix B.1):

pXt,τ (y|x) = ΛX
τ (y|x) exp

{
−

τ∫
t

1∫
0

ΛX
r (z|x)dzdr

}
where ΛX

τ (y|x) = λX(τ,µτ )(y|x)mτ (x, y).

We consider the two most studied paradigms for defining match payoffs: non-
transferable utility (NTU) and transferable utility (TU).

Payoffs: NTU In the NTU paradigm, match payoffs are exogenously given and time-
invariant. We denote πX(y|x) = πXt (y|x) and normalize payoffs, i.e., πX(y|x) ∈ [0,1].
This paradigm precludes individualized price-setting and bargaining.

Payoffs: TU Alternatively, the TU paradigm takes as its primitive the match output
f(x, y) ∈ [0,1], generated when agent types x and y match with one another. Any divi-
sion of output is conceivable. As in the Diamond-Mortensen-Pissarides model, we use
Nash bargaining as a solution concept for the bargaining problem in which agents can
claim their value-of-search V X

t (x) as a threat point. Surplus f(x, y)− V X
t (x)− V Y

t (y) is
shared according to bargaining weights αX and αY (where αX + αY = 1). Formally,

πXt (y|x) = V X
t (x) + αX [f(x, y)− V X

t (x)− V Y
t (y)]. (4)

It follows that match decisions (2) are intratemporally efficient: mt(x, y) = 1 if and only
if f(x, y)− V X

t (x)− V Y
t (y)≥ 0.

3.2 Assumptions

Our assumptions on search and entry rates make use of the L1 seminorm:

N(µ′t, µ
′′
t )≡max

{ 1∫
0

∣∣µ′Xt (x)− µ′′
X
t (x)

∣∣dx, 1∫
0

∣∣µ′Yt (y)− µ′′
Y
t (y)

∣∣dy}.
Search We first assume that higher types meet other agents at a weakly faster rate.20

ASSUMPTION 1 (hierarchical search). Higher types meet other agents at a weakly faster
rate; that is, λXt (y|x2)≥ λXt (y|x1) for x2 > x1 and λYt (x|y2)≥ λYt (x|y1) for y2 > y1.

REMARK 1. The meeting rate satisfies coherence and hierarchical search if and only if
there exists a function ϕt(x, y), non-decreasing in both types x and y, such that λXt (y|x) =
ϕt(x, y)µ

Y
t (y) and λYt (x|y) = ϕt(x, y)µ

X
t (x).

20Hierarchical search encompasses, as a special case, anonymous meeting rates whereby the meeting
rate does not depend on the agent’s type and yet, critically, preserves later established bounds on the value-
of-search across types under mimicking (Lemmata 3 and 4).
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Under symmetry, i.e., µXt (x) = µYt (x) and V X
t (x) = V Y

t (x), the function ψt(x, y) is
moreover symmetric, i.e., ψt(x, y) = ψt(y,x).

PROOF. (⇒) Without loss, write λXt (y|x) = ϕt(x, y)µ
Y
t (y) and λYt (x|y) = ψt(x, y)µ

X
t (x).

Coherence implies that ψt(x, y) = ϕt(x, y), while hierarchical search implies that these
functions are non-decreasing in both arguments. The reverse is immediate.

We further require that the meeting rate is linearly bounded and Lipschitz continu-
ous in the following sense.21

ASSUMPTION 2 (regularity of meetings). There exists Lλ > 0 such that for all x, y and z

(i) λXt (y|x)≤ Lλ
(
1 + µYt (y)

)
and λYt (x|y)≤ Lλ

(
1 + µXt (x)

)
;

(ii) N(λ(t, µ′t)(·|z), λ(t, µ′′t )(·|z))≤ LλN(µ′t, µ
′′
t ).

Entry Entry rates satisfy analogous conditions as meeting rates:

ASSUMPTION 3 (regularity of entry). There exists Lη > 0 such that for all x, y and t

(i) ηXt (x)≤ Lη and ηYt (y)≤ Lη ;
(ii) N(η(t, µ′t), η(t, µ

′′
t))≤ LηN(µ′t, µ

′′
t ).

Examples The entry rate η encompasses several natural entry rates, including no en-
try, to study, for instance, a gradually clearing job market (by which, e.g., academic
economists have organized the junior job market for Ph.D. hires) and constant flows of
entry (as in Burdett and Coles (1997)). Moreover, the entry rate can be time-dependent
to account for seasonal fluctuations, e.g., in the housing market (see Ngai and Tenreyro
(2014)) or the business cycle (see Beaudry et al. (2020)).

Population Dynamics To ensure that the population dynamics are well-defined, we
adapt the proof of the well-known Cauchy-Lipschitz-Picard-Lindelöf theorem, which
typically establishes the local existence of a unique solution for a system of finite-
dimensional ODEs, to our infinite-dimensional context (see Appendix B.2).22 To ensure
that the unique solution exists globally for all t, we rely on Assumption 3, whereby in the
absence of exit the search pool population grows at most linearly in time. We denote
this bound µt and reference it in the proof.23

PROPOSITION 5. System (1) admits a unique solution for any (µ0, λ, η,m) satisfying As-
sumptions 2 and 3.

21Assumptions 1 and 2 relax a proportionality assumption in Lauermann et al. (2020). In order to
prove the fundamental matching lemma in the steady state (see their Condition 32) they assume that
λX(t, µt)(y|x) is proportional to µY

t (y). Our non-stationary analysis does not require this.
22There is one difference from the classical result: owing to our focus on a continuum of types, the system

is infinite-dimensional. We draw on the more general treatment by Dieudonné (2013) (see Chapter 10.4) to
deal with the dimensionality of our problem. What is key when passing from the finite to the infinite is the
mean field property embedded in Assumptions 2 (ii) and 3 (ii), whereby changes in the pool of unmatched
agents, driven by individual types, have a negligible impact on entry and meeting rates.

23 It holds that µX
t+h(x)− µX

t (x)≤ Lηh, and so µX
t (x)≤ µ0 + tLη ≡ µt where the initial upper bound

µ0 is given by the supremum over µX
0 and µY

0 .
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Payoffs: NTU In line with the literature, we consider vertically differentiated types.24

To encompass payoffs that are not strictly increasing for some types, e.g., πX(y|x) =
yx, we impose the slightly weaker assumption that the set of types for whom the gains
of matching with a superior type are small has vanishingly small mass as captured by
Hölder continuity.

ASSUMPTION 4 (NTU-increasing match payoffs). Match payoffs are non-decreasing in
the partner’s type. Moreover, there exist positive constants C and α such that for all ∆> 0,
there is a measurable subset Z∆ of pairs (x, y) satisfying the following:

(i) payoffs for pairs in Z∆ are at least ∆-differentiated, i.e.,

πX(y′|x)− πX(y|x)>∆ and πY (x′|y)− πX(x|y)>∆

for all pairs (x, y), (x, y′), (x′, y) (where x′ > x and y′ > y) in Z∆;
(ii) pairs not in Z∆ have Hölder-vanishing mass, i.e.,

1∫
0

1∫
0

1
{
(x, y) ̸∈ Z∆

}
dxdy < C∆α.

We moreover require a regularity condition regarding match payoffs:

ASSUMPTION 5 (NTU). x 7→ πX(y|x) and y 7→ πY (x|y) admit a uniform boundLπ on total
variation.

Payoffs: TU To ensure that small changes in individual match prospects do not result
in large changes in matching patterns, Shimer and Smith (2000) impose super- or sub-
modular output. Here, we relax their assumption and allow for output functions that
are supermodular for some types and submodular for others, e.g., f(x, y) = xy + yx.25 It
suffices that the set of types for whom complementarity gains are small has vanishingly
small mass, as captured by Hölder continuity.26

ASSUMPTION 6 (TU-differentiated marginal output). There exist positive constants C
and α such that for all ∆> 0, there are measurable subsets Z>∆ and Z<−∆ of pairs (x, y)
satisfying the following:

24Vertical differentiation guarantees that higher types face superior match opportunities, a property we
exploit when developing the NTU mimicking argument.

25Anderson and Smith (2024) study sorting in a frictionless matching market where output functions are
neither supermodular nor submodular.

26If the cross-partial derivative D2
xyf(x, y) is well-defined, Assumption 6 says that there exist positive

constants C and α so that for all ∆> 0

1∫
0

1∫
0

1
{
(x, y) : |D2

xyf(x, y)|<∆
}
dxdy < C∆α.
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(i) marginal output is at least ∆-differentiated for pairs in Z>∆ and at most −∆-
differentiated for pairs in Z<−∆, i.e.,

f(x, y)− f(x, y′)− f(x′, y2) + f(x′, y′)>∆(x′ − x)(y′ − y)

and f(x, y)− f(x, y′)− f(x′, y2) + f(x′, y′)<−∆(x′ − x)(y′ − y)

for all pairs (x, y), (x, y′), (x′, y), (x′, y′) (where x′ > x and y′ > y) in Z>∆ and Z<−∆

respectively;
(ii) pairs not in Z>∆ ∪Z<−∆ have Hölder-vanishing mass, i.e.,

1∫
0

1∫
0

1
{
(x, y) ̸∈ Z>∆ ∪Z<−∆

}
dxdy < C∆α.

As in the NTU paradigm, we require a further regularity condition for output:

ASSUMPTION 7 (TU). x 7→ f(x, y) and y 7→ f(x, y) admit a uniform bound Lf on total
variation.

These assumptions are weaker than requiring that πX(y|x), πY (x|y) and f(x, y) are
continuously differentiable (as in Smith (2006) and Shimer and Smith (2000)).27 We will
use these assumptions to prove bounded variation of the value-of-search (Proposition
6).

Note: Where Assumptions 4 and 6 hold, our focus on pure strategies is without loss; As
Lemmata 8 and 9 make clear, at any moment in time only a negligible mass of agents can
lie on the indifference threshold of a non-negligible mass of agents. Further note that
Assumptions 4 and 6 rule out embedding discrete types in our continuum type space.

4. EQUILIBRIUM

An equilibrium jointly determines the evolution of the endogenous variables of the
search-and-matching economy: the distribution of agents’ characteristics in the search
pool, agents’ continuation values of search, matching decisions and transfers (under
bargaining in the TU paradigm). None of those can be determined in isolation. Agents
compute their value-of-search given their beliefs about the economy at large. In equilib-
rium, each individual correctly anticipates future match opportunities and payoffs. This
generates a feedback loop between the population dynamics and the value-of-search.

DEFINITION 4. An equilibrium of the search-and-matching economy of given initial
search pool population µ0 is a triple (µ,V,m), solution to (1), (2) and (3), where (NTU)
payoffs are exogenously given, or (TU) determined via Nash bargaining (4).

27Discontinuities in payoffs can arise naturally, e.g., when agents differ in discrete attributes such as
workers’ professional degrees, location or export focus of a firm, or number of bedrooms in the rental mar-
ket (see Glaeser and Luttmer (2003)).
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The interplay between aggregate dynamics and the individual decision problem is
a feature shared with virtually all dynamic general equilibrium models under rational
expectations.

The main result of this paper is to show that an equilibrium exists, both in the NTU
and TU paradigm.

THEOREM 2. Posit Assumptions 1, 2, 3 for both paradigms, 4, 5 for NTU, and 6, 7 for TU.
Then there exists an equilibrium of the search-and-matching economy.

The proof of both results will be developed jointly in Sections 2 and 5. These sections
develop tools to deal with discontinuous value functions

5. PROVING EQUILIBRIUM EXISTENCE

In this section, we use Theorem 1 to prove that the search-and-matching economy ad-
mits an equilibrium. This proof relies on the construction of a fixed point operator
V : F2 → F2 that maps a value-of-search profile v = (vX , vY ) ∈ F2 into a new value-
of-search profile. As in the preceding section, F2 is the space of jointly measurable
mappings v : [0,1]×R+ → [0,1]2.

Our focus on value function space is common in the literature (see Shimer and Smith
(2000), Smith (2006)). Even though an equilibrium is a triple (V, µ,m), the value-of-
search V encodes all the information needed to recover the match indicator function
(through Equation (2)), whence the state µ (through Equation (1) as shown in Proposi-
tion 5).

To apply Theorem 1, we construct an operator that satisfies the two conditions that
guarantee the existence of a fixed point: (i) continuity and (ii) uniformly bounded vari-
ation. The proof is extensive. Figure 1 provides a schematic overview.

5.1 Construction of the Fixed Point Operators

We construct two separate fixed point operators, denoted
NTU

V and
TU

V . In the interest
of brevity, we detail only the NTU construction in the main text and relegate the TU
construction to the appendix.

Non-Transferable Utility To compute his value-of-search, an agent must hold a belief
over the likelihood of future meetings. This is a function of the underlying state variable
µt and time. We begin by defining the aggregate population dynamics under the point
belief that other agents’ value-of-search is v.

DEFINITION 5.
NTU
µt [v] is the unique solution to (1) for given (µ0, λ, η,

NTU
m [v]), where

NTU
mt [v](x, y) =

{
1 if πX(y|x)≥ vXt (x) and πY (x|y)≥ vYt (x)

0 otherwise

is the aggregate probability of matching upon meeting under v.
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Construct operators V :F2 →F2 : fixed points ↔ equilibria (Definitions 6 (NTU),8 (TU))

v 7→m[v] continuous
Lemmata 8 (NTU), 9 (TU)

v 7→ µ[v] continuous
Lemma 10

v 7→ V [v] continuous
Props. 7 (NTU), 8 (TU)

Condition (i) Thm. 1

mimicking arguments
Lemmata 3 (NTU), 4 (TU)

HJB equation
Lemma 7

x 7→ V X [v](x, t) u.b.v.
Proposition 6 (ii)

t 7→ V X [v](x, t) Lipschitz

Proposition 6 (i)

(x, t) 7→ V X [v](x, t) u.b.v. time
and type

Condition (ii) Thm. 1

FIGURE 1. A schematic overview of the proof of Theorem 2.

In contrast, agent type x accepts any match whose payoff exceeds his expected dis-
counted match payoff under v, not the value-of-search vXt (x) he ascribes to other agents
of identical type x. As in the set-up, this match acceptance rule gives rise to an implicit
definition of the value-of-search.

DEFINITION 6. The out-of-equilibrium value-of-search given v28 is the solution to

NTU

V X
t [v](x) =

∞∫
t

e−ρ(τ−t)

1∫
0

πX(y|x)
NTU

p X
t,τ [v](y|x)dy dτ, (5)

where x’s match acceptance decisions are individually rational,

NTU
m t[v](x, y) =

{
1 if πX(y|x)≥

NTU

V X
t [v](x) and πY (x|y)≥ vYt (y)

0 otherwise,

28We remark that the operator
NTU

V X
t [v](x) in Definition 6 is well-defined. The unique existence of a

solution
NTU

V X
t [v](x) to equation (5) follows, because the recursively defined value-of-search is the supre-

mum of the right-hand side of equation (5) over the set of match indicatorsmt(x, y) satisfyingmt(x, y) = 0

if πY (x|y)< vYt (y).
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and the probability of meetings is pinned down by aggregate match decisions,

NTU

p X
t,τ [v](y|x) = λX(τ,

NTU
µτ [v])(y|x)NTU

m τ [v](x, y) exp
{
−

τ∫
t

1∫
0

λX(r,
NTU
µr [v])(y′|x)NTU

m r[v](x, y
′)dy′dr

}
.

Critically, the fixed points of our operator coincide with the set of equilibria.

REMARK 2. For given µ0, there exists an equilibrium of the NTU search-and-matching

economy if and only if
NTU

V :F2 →F2 admits a fixed point.

To conceptualize this construction, think of v ∈ F2 as a point belief about other
agents’ value-of-search. Under this interpretation V X

t [v](x) becomes agent type x’s
time-t out-of-equilibrium value-of-search when expecting other agents to match ac-
cording to v, yet computing his own value-of-search under the rule that he accepts a
match whenever it is optimal for him to do so: accept if the offered match payoff ex-
ceeds the discounted expected future match payoff.29 Observe that this is an interpre-
tation only. Our objective here is to preserve desirable in-equilibrium properties of the
value-of-search, not decide what is the most “reasonable” out-of-equilibrium behavior.

5.2 The Mimicking Arguments and Uniformly Bounded Variation

To satisfy Condition (ii) of Theorem 1, we establish the following result.

PROPOSITION 6 (bounded variation of the value-of-search). In both paradigms:

(i) Posit Assumptions 2 and 3. Then the value-of-search is Lipschitz continuous in time;
i.e., for all moments in time T : 0 < T <∞ there exists C > 0 such that for all 0≤ t1 <

t2 ≤ T and x ∈ [0,1]∣∣V X
t2 [v](x)−V X

t1 [v](x)
∣∣≤C |t2 − t1| for all v ∈ F2;

(ii) Posit Assumptions 1, 2, 3 and 4, 5 (NTU) and 7 (TU). Then the value-of-search is of
uniformly bounded variation in type; i.e., for all time indices t ≥ 0, there exists C > 0

such that for all partitions of the type interval [0,1]

m∑
i=0

∣∣V X
t [v](xi+1)−V X

t [v](xi)
∣∣≤C for all v ∈ F2.

Lipschitz continuity in time of any agent’s value-of-search (Condition (i)) is due to an
immediate application of the Hamilton-Jacobi-Bellman equation. Uniformly bounded
variation in types (Condition (ii)) relies on what we refer to as the mimicking arguments
and discuss below. The relevance of these conditions is readily apparent:

29For comparison, payoffs in the TU paradigm are computed under x’s belief that her threat point will
be V X

t [v](x) whereas her potential partner’s threat point is vYt (y).
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COROLLARY 1. Posit Assumptions 1, 2, 3 (both paradigms) and 4, 5 (NTU), 7 (TU). Then

the operators
NTU

V and
TU

V satisfy Condition (ii) of Theorem 1.

PROOF. Both V1
0

(
x 7→ V X

t [v](x)
)

and Vt
t

(
t 7→ V X

t [v](x)
)

are uniformly bounded in both
paradigms due to Proposition 6 (i) and (ii). Moreover, due to (i), there exists C such that
for all x ∈ [0,1]:

∣∣V X
t2 [v](x)−V X

t1 [v](x)
∣∣≤C |t2 − t1|. Hence,

V2

(
(x, t) 7→ V t[v](x), [0,1]× [0, T ]

)
≤ sup

P

m∑
i=1

sup
x∈[0,1]

∣∣V X
ti
[v](x)−V X

ti−1
[v](x)

∣∣≤ 2C T,

where P is any partition of the time interval [0, T ].

The Mimicking Arguments The remainder of this subsection discusses the proof of
Proposition 6 (ii) by means of the mimicking arguments: two lemmata first developed
in Bonneton and Sandmann (2021) and Bonneton and Sandmann (2023) to establish
sorting results in equilibrium, provided an equilibrium exists. They are equally indis-
pensable in the pursuit of proving equilibrium existence. The reason is that bounded
variation is a property of the difference in values-of-search across types. However, non-
stationary dynamics typically preclude a closed-form characterization of the value-of-
search. Instead, we employ a revealed preferences argument whereby one type repli-
cates (’mimicks’) another type’s probability of matching with other agents. Since mim-
icking is not the revealed preference, this bounds the difference in values-of-search by
the difference in expected payoffs or outputs with such expectation formed under a dis-
counted measure of the agents’ future match prospects.

More specifically, Bonneton and Sandmann (2023) prove the following: In the NTU
paradigm, posit Assumptions 1, 2, 3 and 4. Then for all x2 > x1 the equilibrium value-of-
search satisfies

NTU

V X
t (x2)−

NTU

V X
t (x1)≥

1∫
0

(
πX(y|x2)− πX(y|x1)

)
QX

t (y|x1)dy

for some discounted density QX
t (y|x1).30 This result relies on payoff monotonicity (As-

sumption 4): superior types, being more desirable, can exploit their superior match of-
ferings and replicate match outcomes of any inferior type.

Bonneton and Sandmann (2021) prove an analogous mimicking argument in the
TU paradigm. This relies on the preliminary (and well-known) observation that the in-
fratemporal efficiency of matching decisions under Nash bargaining bounds the value-
of-search: for all x2 > x1 it holds that

TU

V X
t (x2)≥

∞∫
t

e−ρ(τ−t)

1∫
0

πXt (y|x2)pXt,τ (y|x1)dy dτ.

30More precisely, QX
t (y|x1) is the discounted future match density of agent type x1 matching with agent

type y.
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From a mathematical viewpoint, alas, TU payoffs (as defined in (4)) depend on the non-
stationary value-of-search: πXt (y|x) = V X

t (x) + αX [f(x, y)− V X
t (x)− V Y

t (y)]. To estab-
lish time-invariant bounds, we must eliminate the value-of-search on the right-hand-
side of the integral above. We proceed via iteration and apply the infratemporal effi-
ciency bound to (the weighted discounted future average of) Vτ (x2)−Vτ (x1). This gives
two terms: The first term is, as desired, a weighted sum over the difference in match
output. The second term is (a weighted discounted future average over averages of) the
expected difference in values-of-search. Recursively, k iterations give k + 1 terms: The
first k terms converge to a (weighted) difference in match output. The k+1th term con-
verges to zero as k grows large. In sum, this proves the following: In the TU paradigm,
posit Assumption 1, 2 and 3. Then for all x2 > x1

31 the equilibrium value-of-search satis-
fies

TU

V X
t (x2)−

TU

V X
t (x1)≥

1∫
0

(
f(x2, y)− f(x1, y)

)
QX

t (y|x1)dy

for some discounted density QX
t (y|x1). These arguments are fully developed in the ap-

pendix (cf. Lemmata 3,5,4). Unlike in the aforementioned papers, we prove here the
stronger property that the mimicking arguments hold not just in equilibrium but are
satisfied by our operators for any value-of-search profile.

5.3 Continuity of the Fixed Point Operators

We then turn to Item (i) from Theorem 1: continuity of the operator v 7→ V [v].

PROPOSITION 7 (NTU). In the NTU paradigm, posit Assumptions 2, 3 and 4. Then for all
v ∈ F2, t ∈ [0,∞): for all ϵ > 0 there exists δ > 0 such that

1∫
0

∣∣NTU

V X
t [v](x)−

NTU

V X
t [v](x)

∣∣dx < ϵ for all v : ||v− v||< δ.

A (needlessly) stronger result obtains in the TU paradigm.

PROPOSITION 8 (TU). In the TU paradigm, posit Assumptions 2, 3 and 6. For all v ∈ F2,
t ∈ [0,∞), x ∈ [0,1]: for all ϵ > 0 there exists δ > 0 such that

∣∣TU

V X
t [v](x)−

TU

V X
t [v](x)

∣∣< ϵ for all v : ||v− v||< δ.

To establish these Propositions we rely on two intuitive preliminary results. In Ap-
pendix F we show that match indicator functions v 7→ mt[v] are continuous in both

31Assuming that the meeting rate is not just hierarchical but in fact identical for all types, it is easy to see
that this holds for any x2, x1 irrespective of ordering. If so, one implication of the bound below proves that
the value-of-search is continuous in types.
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paradigms (see Lemmata 8 and 9).32 Following arguments from differential calculus,
we then use Grönwall’s lemma to track the non-stationary evolution of the state and de-
duce the continuity of v 7→µt[v] (see Lemma 10). Unlike the forward-looking population
dynamics, the value-of-search is backward-looking in time. The proof of Propositions 7
and 8 (see Appendices F.5 and F.6) encompasses the infinite time-horizon by considering
the auxiliary function vXt (x) = eρtV X

t (x) (see Corollary 2) that admits a more tractable
HJB equation.

The juxtaposition of both Propositions makes apparent a key difference between the
NTU and the TU paradigm. In the TU paradigm, the operator v 7→ V X

t [v](x) is contin-
uous. In the NTU paradigm, it need not be. To see this, it is instructive to decompose
any type x’s time-t match opportunities into marginal and inframarginal prospective
partner types. Marginal types y are indifferent between accepting and rejecting x, infra-
marginal types y strictly prefer entering the match. An increase in other agents’ time-t
value-of-search has two effects. First, in the TU paradigm x matches with inframarginal
partners at reduced payoffs. Continuity is preserved because the decrease in x’s pay-
off is proportional to the increase in y’s value-of-search. Second, in both paradigms x
ceases to match with marginal types. The loss of marginal types hurts x in the NTU
paradigm because marginal types can be strictly profitable to match with. This gives
rise to a discontinuity in the value-of-search operator if the set of marginal types is non-
negligible. In the TU paradigm, the loss of marginal types is inconsequential due to the
intratemporal efficiency of Nash bargaining: if y is indifferent in between matching and
not matching with x, then so is x with regard to y.33

6. DISCUSSION

This section motivates the generality of our proof and provides some indications as to
how limitations of our model can be addressed.

6.1 Discontinuous Value-of-Search Profiles

Our existence proof, notably Theorem 1, is sufficiently general to accommodate discon-
tinuities in the value-of-search profile across types. We here discuss how discontinuities
can arise—even in the absence of discontinuous primitives such as meeting rates, pay-
offs, or output.

In the non-transferable utility paradigm, the most well-known example of such dis-
continuity is the steady-state phenomenon of “block segregation” (cf. Smith (2006) and

32Lemma 8 is analogous to Smith (2006) Lemma 8 a) in the steady state. Lemma 9 relaxes Shimer and
Smith (2000) Lemma 3 who impose global super- or submodularity. Those are special cases of the Hölder
continuity assumption 6.

33Note that we did not solve the model by passing to the mean field limit, i.e., by gradually decreasing the
scope of individual agents to influence the future evolution of the search pool. Lemma 10 and Propositions
7 and 8 suggest that doing so would not lead to the selection of a different set of equilibria. Suppose that one
agent could control the behavior of an interval of agents and thereby exert some non-negligible influence
on the evolution of the state. Our results show that as this interval shrinks, such control has an exceedingly
vanishing effect on other agents’ matching decisions.
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reference therein) whereby identical Neumann-Morgenstern preferences over partners,
πX(y|x) = γ(x)ϕ(y) with ϕ increasing, give rise to distinct matching classes in all equi-
libria. The intuition for this phenomenon, prominently conveyed by Burdett and Coles
(1997) for πX(y|x) = y, is straightforward: every agent agrees to match with a set that
includes the highest types because search frictions make any sufficiently high type de-
sirable to all. Since these high types are universally accepted and, by assumption, have
identical preferences, they all share the same acceptance threshold, denoted x̂. As a
result, the value-of-search jumps at x̂.

Beyond the von Neumann-Morgenstern case, two key factors are essential to ob-
serve block segregation and thereby discontinuous values-of-search. First, utility must
be non-transferable (NTU). Otherwise, in the TU case, the type below x̂ could compen-
sate the higher type for accepting a partner below the threshold by making a small trans-
fer.34,35

REMARK 3 (TU continuity). Suppose that an equilibrium exists in the TU paradigm. If
the output x 7→ f(x, y) is continuous for population X and meetings are anonymous (i.e.,
λXt (y|x1) = λXt (y|x2) for all x1, x2), then population X ’s value-of-search x 7→ V X

t (x) is
continuous.

Second, when utility is non-transferable (NTU), discontinuities typically require
identical acceptance thresholds across types. Identical acceptance thresholds, however,
signify a violation of strict positive assortative matching, whereby higher-ranked, more
desirable agents are choosier. Complementarity conditions on payoffs prevent this.36

REMARK 4 (NTU continuity). Suppose that an equilibrium exists in the NTU paradigm. If
population Y match acceptance thresholds xt(y)≡ inf{x : πY (x|y)≥ V Y

t (y)} are increas-
ing and populationX payoffs x 7→ πX(y|x) and meeting rates x 7→ λXt (y|x) are continuous
in their own type, then population X ’s value-of-search x 7→ V X

t (x) is continuous.

In the absence of complementarity conditions that ensure strict assortative match-
ing in the NTU paradigm, indifference regions cannot be ruled out.37

34Transferability guarantees more broadly that if agent heterogeneity aggregates via the price mecha-
nism, e.g., Bewley-style economies, the value function is continuous in types.

35We require anonymous meeting rates for this result to hold to ensure that the mimicking argument
applies symmetrically, i.e., both a higher type mimicking a lower type and a lower type mimicking a higher
type provide bounds on the value-of-search.

36Theorem 2 from Bonneton and Sandmann (2023) entails that if πY (x|y) is log submodular and log
submodular in differences, with at least one of these conditions holding strictly, then xt(y) is increasing.

37Higher types generally have better matching opportunities, making them more selective. However,
without such complementarity, some higher types are less selective about matching with lower types. De-
pending on the distribution of agents and the meeting rate, an interval of types may be indifferent between
accepting or rejecting the same threshold type, x̂. As with identical von Neumann-Morgenstern prefer-
ences, the consequence is that match opportunities and, therefore, the value-of-search is discontinuous at
x̂.
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6.2 Possible Extensions

A vanilla matching model typically assumes quadratic search, constant entry, and su-
permodular output. Our main result ensures that a non-stationary equilibrium exists
in this special case. Going beyond these stylized assumptions, our model also allows
to address phenomena of matching markets that are rarely modeled in the literature
(including in the steady state). Our assumption of hierarchical search allows to model
greater visibility of highly ranked individuals (e.g., embedding skewed attention in pro-
fessional social media or the added benefit of elite versus state university alumni net-
works). Time dependence in meeting and entry rates can capture seasonality (e.g., daily
demand and traffic jam peaks affecting ride hailing services or different market thick-
ness in hot & cold housing markets). Discontinuities in exogenous payoffs also allow to
capture qualitative differences between agents (e.g., houses versus apartments, degree-
versus non-degree workers). Finally, our approach invites directly contrasting equilib-
rium predictions of NTU and TU models (e.g., sticky versus flexible wages; marriages
with or without dowry).

Other common model specifications are ruled out by our framework. We here dis-
cuss how those could be addressed in extensions of our model.

Free entry Our model does not allow the entry rate to depend on the value-of-search, as
would be the case under free entry. In practice, researchers assume that entry is finitely
elastic (e.g., Moll (2020) discussing the original firm-size model by Hopenhayn (1992)).
It would be feasible to accommodate dependency on the value-of-search in our context
as well. The only adjustment required would be in Lemma 10, where we propose that
the search pool population µ is continuous in the value-of-search V . Upon closer in-
spection of the proof, the key arguments continue to hold assuming that ηX is Lipschitz
continuous in both the state µ and the value-of-search V .

Match destruction In Shimer and Smith (2000) and Smith (2006), exogenous match
destruction allows to maintain a steady state population of unmatched agents. This
involves a time-invariant distribution of agents ℓ(x)dx, with matches destroyed at an
exogenous rate δ. Unlike in our framework, agents anticipate re-entry into the search
pool. Since core proof concepts, notably the mimicking argument, are unaffected by
exogenous re-entry, this extension is straightforward. Endogenous match destruction,
where agents may opportunistically destroy matches to re-enter the search pool, has
received less attention (Smith (1992) is a notable exception). In the NTU paradigm,
endogenous match destruction raises new challenges as the lack of commitment over
match duration can make higher types less desirable, invalidating the mimicking argu-
ment (cf. Kreutzkamp et al. (2022), Bonneton and Sandmann (2023)). Conversely, in
the TU paradigm, such decisions preserve intratemporal efficiency, allowing the proof
to accommodate opportunistic match destruction or on-the-job search, as seen in labor
economics (e.g., Cahuc et al. (2006)).

Homophily (as in Alger and Weibull (2013)) occurs when agents of similar character-
istics meet more frequently. If this affects all types, our analysis rules this out. Bottom
types cannot meet other bottom types at a higher rate because the added heterogeneity
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at the meeting stage introduces additional variation in the value-of-search that cannot
be accounted for by the mimicking arguments (Lemmata 3 and 4). “Homophily at the
top” is ruled in, by contrast. Specifically, the assumption of hierarchical search allows
higher types to be more likely to meet more desirable prospective partners.

Linear Search Linear and Cobb-Douglas meeting rates violate Lipschitz continuity in
the state and are thus ruled out. Either could be incorporated if the search pool popu-
lation was bounded away from zero (e.g., due to lower bounds on entry rates and upper
bounds on meeting rates).

Discrete types With discrete types, an equilibrium in pure strategies may not exist. To
accommodate mixing, the Kakutani–Glicksberg–Fan fixed point theorem, as utilized by
Jovanovic and Rosenthal (1988) and Manea (2017a), provides a path forward

7. CONCLUSION

Although many economic questions in the search-and-matching literature concern
non-stationary dynamics (see for instance Lise and Robin (2017)), the theoretical lit-
erature has confined itself, with few exceptions,38 to the steady state. This paper proves
the existence of a non-stationary equilibrium for a general class of search-and-matching
models, encompassing model specifications in Shimer and Smith (2000), Smith (2006)
and Lauermann et al. (2020).

The tools we develop here have scope, however, that goes beyond search-and-
matching. Our fixed point theorem, coupled with the economic insight born out by
the mimicking arguments, is applicable in many related dynamic general equilibrium
models with heterogeneous agents (see Achdou et al. (2014)) where the aggregate state
evolves deterministically over time.

An interesting open question remains: how large is the set of non-stationary equi-
libria? Could it even be unique? Our paper does not speak to this question.39,40 Existing
examples of multiplicity (see Burdett and Coles (1998), Manea (2017a), Eeckhout and
Lindenlaub (2019)) rely on explicit equilibrium constructions with finitely many (typi-
cally two) types. In the continuum model, it is conceivable that the inability of a single
agent type to coordinate on different equilibria (e.g., high types accepting or rejecting
low types) implies that uniqueness can be restored via an iterated dominance argument.

APPENDIX A: THEOREM 1: OMITTED PROOFS

A.1 Proof of Proposition 1

PROOF OF PROPOSITION 1. We show that (F(k),d) is complete and totally bounded. This
establishes compactness (see for instance Munkres (2000), Theorem 45.1, p. 274).

38See for instance Boldrin et al. (1993), Burdett and Coles (1998), Shimer and Smith (2001).
39We failed in both paradigms at our attempt to construct a contraction mapping, but felt that we came

closer in the TU paradigm.
40Whether or not an equilibrium is unique is less critical if one is interested in properties that occur in

any equilibrium, as is the case for the literature on assortative matching.
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We focus on completeness first. By abuse of notation, omit superscripts and let
(Fn)n∈N a Cauchy sequence in (F(k),d). Then for each (x, t) ∈ [0,1] × [0,∞) the se-
quence

(
Fn(x, t)

)
n∈N converges as n→∞. Denote F (x, t) its pointwise limit and F the

thereby obtained function in F . We first show that F ∈ F(k). Fix arbitrary ϵ > 0 and
(x, t), (y, r) ∈ [0,1]× [0,∞). Due to pointwise convergence there exists N ∈ N such that
for all n≥N we have

max
{∣∣Fn(x, t)− F (x, t)

∣∣, ∣∣Fn(y, r)− F (y, r)
∣∣}< ϵ

2
.

It follows from the triangle inequality and k-Lipschitz continuity of FN that∣∣F (x, t)− F (y, r)
∣∣≤ ∣∣F (x, t)− FN (x, t)

∣∣+ ∣∣FN (x, t)− FN (y, r)
∣∣+ ∣∣FN (y, r)− F (y, r)

∣∣
< ϵ+ k ·max

{
|x− y|, |t− r|

}
.

Since ϵ > 0 was arbitrary this establishes that F ∈ F(k). We then show that Fn → F in
the d-metric. Again fix arbitrary ϵ > 0. If for any given n ∈N the sup is attained for some
t > T where e−T < ϵ, clearly d(Fn, F ) < ϵ. Let us then focus our attention on the case
(x, t) ∈ [0,1]× [0, T ]. Define Bϵ

(k)(x, t) =
{
(y, r) : max

{
|x− y|, |t− r|

}
< ϵ

4k

}
and let N ∈N

such that for all n≥N we have |Fn(x, t)− F (x, t)|< ϵ
2 . Then for any (y, r) ∈Bϵ

(k)(x, t)∣∣Fn(y, r)− F (y, r)
∣∣≤ ∣∣Fn(y, r)− Fn(x, t)

∣∣+ ∣∣Fn(x, t)− F (x, t)
∣∣+ ∣∣F (x, t)− F (y, r)

∣∣
< 2k max

{
|x− y|, |t− r|

}
+
ϵ

2
< ϵ.

Finally observe that the set
{
Bϵ
(k)(x, t) : (x, t) ∈ [0,1] × [0, T ]

}
forms an open covering

of the compact set [0,1] × [0, T ]. Whence there exists a finite subcovering of that set,{
Bϵ
(k)(xj , tj) : j ∈ {1, ...,M}

}
. For any j ∈ {1, ...,M} let Nj such that for all n ≥ Nj we

have
∣∣Fn(xj , tj)− F (xj , tj)

∣∣< ϵ
2 . Then it follows from the preceding arguments that for

all n ≥ N ≡ max
{
Nj : j ∈ {1, ...,M}

}
we have d(Fn, F ) < ϵ. This establishes complete-

ness.
Let’s now focus attention on total boundedness. That is, for every ϵ > 0 there exists a

finite number M of functions Fj ∈ F such that for all F ∈ F(k) we have d(Fj , F )< ϵ for
some j ∈ {1, ...,M}. We achieve this by choosing a grid Rϵ on [0,1] as well as a grid Pϵ

on [0,1] × [0, T ] for some T > 0 such that e−T < ϵ. In particular, let Rϵ =
{
0, ϵ, ..., lϵϵ

}
where lϵϵ ≤ 1 < (lϵ + 1)ϵ and Pϵ =

{
(mk

ϵ
2 ,

n
k

ϵ
2 ) : m,n ∈ {0, ...,mϵ} × {0, ...nϵ}

}
where

mϵ

k
ϵ
2 ≤ 1< mϵ+1

k
ϵ
2 and nϵ

k
ϵ
2 ≤ T < nϵ+1

k
ϵ
2 . We then consider the (finite) set of grid func-

tions Gϵ =
{
g : Pϵ →Rϵ

}
. Let g an element in this set. The corresponding function Fg

is defined pointwise where Fg(x, t) = g
(
m
k

ϵ
2 ,

n
k

ϵ
2 ) for (x, t) ∈ [mk

ϵ
2 ,

m+1
k

ϵ
2 )× [nk

ϵ
2 ,

n+1
k

ϵ
2 ).

Denote Fϵ
(k) ≡

{
Fg ∈ F : g ∈ Gϵ

}
the desired finite set of functions.

ϵ-proximity of F(k) to Fϵ
(k) then follows immediately: for arbitrary F ∈ F(k) there exists

g ∈ Gϵ such that for all (y, τ) ∈ Pϵ we have
∣∣F (y, τ) − g(y, τ)

∣∣ ≤ ϵ
2 . Then consider any

(x, t) ∈ [0,1] × [0, T ]. Let (xϵ, tϵ) the greatest element in Pϵ such that xϵ ≤ x and tϵ ≤ t.
Then by construction Fg(x

ϵ, tϵ) = Fg(x, t) and max
{
|x − xϵ|, |t − tϵ|

}
≤ 1

k
ϵ
2 . Using the
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triangle inequality and the fact that F is k-Lipschitz continuous, we obtain∣∣F (x, t)−Fg(x, t)
∣∣≤ ∣∣F (x, t)−F (xϵ, tϵ)∣∣+ ∣∣F (xϵ, tϵ)− Fg(x, t)︸ ︷︷ ︸

=Fg(xϵ,tϵ)

∣∣≤ kmax
{
|x− xϵ|, |t− tϵ|

}
+
ϵ

2
≤ ϵ.

As (x, t) was arbitrary, this bound holds uniformly across [0,1] × [0, T ]. Meanwhile, for
t > T ϵ-closeness is satisfied vacuously, whence the result.

A.2 Proof of Lemmata 1 and 2

PROOF OF LEMMA 1. Hm
(k)[F

N ]⊆F(k). Pick arbitraryF ∈ FN . Pick arbitrary (x1, t1), (x0, t0) ∈
[0,1]× [0,∞). We show that∣∣Hm

(k)[F ](x1, t1)−Hm
(k)[F ](x0, t0)

∣∣≤ k max
{
|x1 − x0|, |t1 − t0|

}
≡ kC.

Or, this is vacuously the case if kC > 1. Thus suppose otherwise that kC ≤ 1. In partic-
ular, this implies that C ≤ 1

k <
2
k = b(k)/2. Then, as Figure 2 illustrates,

∣∣Hm
(k)[F ](x1, t1)−H

m
(k)[F ](x0, t0)

∣∣≤ 1
/
(b(k))

2
∫

B(k)(x1,t1)△B(k)(x0,t0)

d(x, t)

≤ 1
/
(b(k))

2
∫

B(k)(x1,t1)△B(k)(x1+C,t1+C)

d(x, t)≤ 2
C b(k) + (b(k) −C)C

(b(k))
2 ≤ 4

Cb(k)

(b(k))
2 = kC,

where A△B = (A \B)∪ (B \A) denotes the symmetric difference.

b(k) C

C

b(k)
2

b(k)
2

(x+C, t+C)

(x, t)

FIGURE 2. The shaded area corresponds to the measure of B(k)(x, t)△B(k)(x+C, t+C).
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PROOF OF LEMMA 2. Fix F ∈ FN . Fix ϵ > 0. Let T ≥ 1 : e−T < ϵ. Define

An =
{
t ∈ [0, T ] :

1∫
0

∣∣Hm[F ](x, t)−Hm[F ](x, t)
∣∣dx≤ ϵ

18

1

T
∀F ∈ FN : dN (F,F )<

1

n

}
.

By the continuity Assumption (i) of the theorem there exists N ∈ N so that for all n≥N

and F : dN (F,F )< 1
n the Lebesgue measure of [0, T ] \An is less than ϵ

18 (b(k))
2.41 Then

for all (x0, t0) ∈ [0,1]×R+ and
b(k)
2 ≤ 1

e−t
∣∣∣Hm

(k)[F ](x0, t0)−Hm
(k)[F ](x0, t0)

∣∣∣≤ ∫
B(k)(x0,t0)

∣∣Ĥm[F ](x′, t′)− Ĥm[F ](x′, t′)
∣∣

(b(k))
2 d(x′, t′)

≤
T+1∫
−1

2∫
−1

∣∣Ĥm[F ](x, t)− Ĥm[F ](x, t)
∣∣dxdt≤ 9

T∫
0

1∫
0

∣∣Hm[F ](x, t)−Hm[F ](x, t)
∣∣dxdt

≤ 9

∫
An

1∫
0

∣∣Hm[F ](x, t)−Hm[F ](x, t)
∣∣dxdt+ ϵ

2
≤ 9T

ϵ

18

1

T
+
ϵ

2
= ϵ.

Since (x0, t0) was arbitrary, this bound is uniform, i.e., d(Hm
(k)[F ],H

m
(k)[F ])< ϵ for all F :

dN (F,F )< δ where δ ≤ 1
N .

A.3 Proof of Proposition 4

PROOF OF PROPOSITION 4. By abuse of notation denote (F ∗
(k))k∈N the pointwise conver-

gent subsequence with limit point F ∗ ∈ FN . This sequence exists due to Propositions 2
and 3. Then, due to the triangle inequality,∣∣∣∣F ∗ −H[F ∗]

∣∣∣∣≤ ∣∣∣∣F ∗ − F ∗
(k)

∣∣∣∣+ ∣∣∣∣H(k)[F
∗
(k)]−H(k)[F

∗]
∣∣∣∣+ ∣∣∣∣H(k)[F

∗]−H[F ∗]
∣∣∣∣,

where we have made use of the fact that F ∗
(k) is a fixed point, i.e., H(k)[F

∗
(k)] = F ∗

(k). By
construction, the first term converges as k→∞; the third term converges because the
convolution with an approximate delta function converges in the seminorm defined on
compact sets [0,1]× [0, T ] to the function itself (see for instance Königsberger (2004) 10.1
II). This property extends to [0,1]×R+ under the discounted semimetric.

With regard to the second term, fix arbitrary ϵ > 0. Then there exists T > 0 so that

e−T < ϵ/2. Therefore, for arbitrary
b(k)
2 ≤ 1, ||H(k)[F

∗
(k)] − H(k)[F

∗]|| is bounded from
above by

max
n∈{1,...,N}

T∫
0

1∫
0

∣∣∣ 1

(b(k))
2

∫
B(k)(x,t)

(
Ĥn[F ∗

(k)](x
′, t′)− Ĥn[F ∗](x′, t′)

)
d(x′, t′)

∣∣∣dxdt+ ϵ

2
.

41The peculiar number 18 = 2 · 9 is the pertinent bound here because for any point (x, t) ∈ [0,1]× [0, T ]

there could exist a ball containing nine distinct points (x′, t′) ∈ [−1,2]× [−1,∞) so that the extension Ĥ

interprets (x′, t′) as if it were (x, t): Ĥ[F ](x′, t′) =H[F ](x, t) for all F ∈ FN .
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And the first term is bounded by

max
n∈{1,...,N}

T∫
0

1∫
0

1

(b(k))
2

∫
B(k)(x,t)

∣∣∣Ĥn[F ∗
(k)](x

′, t′)− Ĥn[F ∗](x′, t′)
∣∣∣d(x′, t′)dxdt

≤ max
n∈{1,...,N}

T+1∫
−1

2∫
−1

∣∣∣Ĥn[F ∗
(k)](x, t)−Ĥ

n[F ∗](x, t)
∣∣∣dxdt

≤ max
n∈{1,...,N}

9

T∫
0

1∫
0

∣∣∣Ĥn[F ∗
(k)](x, t)−Ĥ

n[F ∗](x, t)
∣∣∣dxdt

= max
n∈{1,...,N}

9

T∫
0

1∫
0

∣∣∣Hn[F ∗
(k)](x, t)−Hn[F ∗](x, t)

∣∣∣dxdt.
Then recall that Proposition 3 establishes that F ∗

(k) converges pointwise to F ∗. Whence
due to the continuity Assumption (i) of the Theorem the expression goes to zero as k→
∞.

APPENDIX B: SET-UP: OMITTED PROOFS

B.1 Derivation of the Match Density

The probability of agent type x not matching during [t, τ ] is

exp
{
−

τ∫
t

1∫
0

ΛX
r (z|x)dzdr

}
= 1−

τ∫
t

1∫
0

pXt,r(z|x)dzdr,

where the left-hand-side is by definition of the inhomogeneous Poisson process and the
right-hand-side is by definition of the density of future matches. Differentiating with
respect to time τ implies that

1∫
0

ΛX
τ (z|x)dz exp

{
−

τ∫
t

1∫
0

ΛX
r (z|x)dzdr

}
=

1∫
0

pXt,τ (z|x)dz.

Since this equality holds for any measurablemτ (x, ·), the density must satisfy pXt,τ (y|x) =
ΛX
τ (y|x) exp

{
−
∫ τ
t

∫ 1
0 ΛX

r (z|x)dzdr
}

pointwise.

B.2 Proof of Proposition 5

Step 1: We equip the set of possible evolutions of the state µ over a finite time interval
with a norm.
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Denote Iδ(t0) the time interval [t0, t0+δ). LetM+ be the set of measurable, bounded
and non-negative functions h : [0,1]→ R+. Denote M the identical set without the re-
quirement that functions must be non-negative. Equip M with the seminorm, denoted

|| · ||1, i.e., ||h||1 =
1∫
0

|h(x)|dx, and, by abuse of notation, identify M and M+ with the set

of equivalence classes where any two functions that agree almost everywhere belong to
the same class. It is well-known that (M, || · ||1) is a Banach space and (M+, || · ||1) is
complete. Then define Mδ(t0) the set of continuous mappings µ : Iδ(t0)→M2

+ where
µXt (x)≤ µt and µYt (y)≤ µt. We equip Mδ(t0) with the norm

||µ||Mδ(t0)
= sup

t∈Iδ(t0)
max

{
||µXt ||1, ||µYt ||1

}
.

Following standard arguments (see Munkres (2000) Theorem 43.6), Mδ(t0) is complete.
Step 2: Fix a time-and type-dependent match probability mt(x, y) and initial con-

dition µt0 ∈M2
+. We define a mapping T : Mδ(t0) → Mδ(t0) whose fixed points µ ∈

Mδ(t0) correspond to the solutions of (1) within time interval Iδ(t0):

(TXµ)t(x) =min
{
max

{
µXt0 +

t∫
t0

hX(τ,µτ )dτ ; 0
}
, µt
}

where h= (hX , hY ) : Iδ(t0)×M2
+ →M2 is

hX(t, µt)(x) =−µXt (x)

1∫
0

λX(t, µt)(y|x)mt(x, y)dy+ ηX(t, µt)(x).

Step 3: We show that T is a contraction mapping for δ sufficiently small. Whence by
the contraction mapping theorem it admits a unique fixed point. To begin with, consider
arbitrary µ′, µ′′ ∈Mδ(t0). Then

sup
t∈Iδ(t0)

||(TXµ′)t − (TXµ′′)t||1 ≤ δ sup
t∈Iδ(t0)

||hX(t, µ′t)− hX(t, µ′′t )||1.

Expanding gives, for all x ∈ [0,1] and t ∈ Iδ(t0),

|hX(t, µ′t)(x)− hX(t, µ′′t )(x)| ≤ |µ′Xt (x)− µ′′
X
t (x)|

1∫
0

λX(t, µ′′t )(y|x)mt(x, y)dy

+ µ′
X
t (x)

1∫
0

|λX(t, µ′′t )(y|x)− λX(t, µ′t)(y|x)|mt(x, y)dy+ |η(t, µ′t)(x)− η(t, µ′′t )(x)|.

We then make use of Assumptions 2 and 3:

||hX(t, µ′t)(x)− hX(t, µ′′t )(x)||1 ≤ ||µ′Xt − µ′′
X
t ||1Lλ

(
1 + µt

)
+
(
µtL

λ +Lη
)
N(µ′t, µ

′′
t),
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whence ||Tµ′ − Tµ′′||Mδ(t0)
≤ δ
(
Lη + Lλ + 2Lλµt

)
||µ′ − µ′′||Mδ(t0)

. Hence T is a con-
traction mapping for δ sufficiently small.

Step 4: We establish existence of a unique solution on successive time intervals

[
k∑

ℓ=0
δℓ,

k+1∑
ℓ=0

δℓ) beginning at initial time t= 0.

To ensure that T :Mδk+1
(

k∑
ℓ=1

δℓ)→Mδk+1
(

k∑
ℓ=1

δℓ) is a contraction mapping for each

k, we construct the sequence (δk)k≥1 as the solution to

δk+1

(
Lη +Lλ + 2Lλ

(
µ0 +

k∑
ℓ=1

δℓL
η + δk+1L

η
)
=

1

2
.

Here we used that µXt (x) is uniformly bounded by µt = µ0 + tLη (cf. Footnote 23).
With T a contraction mapping, the Banach fixed point theorem guarantees the exis-

tence of a unique fixed point of T in Mδk+1
(

k∑
ℓ=1

δℓ), solution to (1) in Iδk+1
(

k∑
ℓ=1

δℓ).42

Step 5: It remains to show that
∞∑
k=1

δk =∞, as this guarantees that the solution to the

population dynamics is globally defined for all t≥ 0.
Or, solving for δk+1 yields

δk+1 =−

µ0
Lη +

Lη +Lλ

2LλLη
+

k∑
ℓ=1

δℓ

2
+

[( µ0
Lη +

Lη +Lλ

2LλLη
+

k∑
ℓ=1

δℓ

2

)2

+
1

4LλLη

] 1
2

.

Then suppose by contradiction that
∑∞

k=1 δk is finite. If so, per the formula above, δk+1

is uniformly bounded away from 0. And so the sum
∑∞

k=1 δk must be infinite. Absurd.

APPENDIX C: CONSTRUCTION OF THE TU FIXED POINT OPERATOR

As in the NTU construction, we begin by defining the aggregate population dynamics
under the belief v.

DEFINITION 7.
TU
µt[v] is the unique solution to (1) for given (µ0, λ, η,

TU
m [v]), where

TU
mt[v](x, y) =

{
1 if f(x, y)− vXt (x)− vYt (y)≥ 0

0 otherwise

is the aggregate probability of matching upon meeting under the value-of-search profile
v.

42Strictly speaking, the proof of Proposition 5 identifies a unique solution µ to the system (1) within the
equivalence class of states M∑∞

k=1 δk
(0). Existence of a unique solution to the system (1) for a fixed type x

is then established as follows: solve (1) for type x only while maintaining that µX
t (x′) for x′ ̸= x and µY

t (y)

are given by the solution µ ∈M∑∞
k=1 δk

(0).
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To define the individual value-of-search in the TU paradigm we must also specify
future match payoffs. Those are defined implicitly by the Nash bargaining solution. The
individual agent believes that her threat point is her actual value-of-search whereas her
potential partner’s threat point is vYt (y).

DEFINITION 8. The out-of-equilibrium value-of-search given belief v is the solution to

TU

V X
t [v](x) =

∞∫
t

e−ρ(τ−t)

1∫
0

TU
π

X
t [v](y|x)

TU

p X
t,τ [v](y|x)dy dτ,

where x’s subjective match payoffs are

TU
π

X
t [v](y|x) =

TU

V X
t [v](x) + αX

(
f(x, y)−

TU

V X
t [v](x)− vYt (y)

)
,

x’s match acceptance decisions are individually rational,

TU
m t[v](x, y) =

{
1 if f(x, y)−

TU

V X
t [v](x)− vYt (y)≥ 0 ⇔ TU

π
X
t [v](y|x)≥

TU

V X
t [v](x)

0 otherwise

and the probability of meetings is pinned down by aggregate match decisions,

TU

p X
t,τ [v](y|x) = λX(τ,

TU
µτ [v])(y|x)

TU
m τ [v](x, y) exp

{
−

τ∫
t

1∫
0

λX(r,
TU
µr[v])(y

′|x)TU
m r[v](x, y

′)dy′dr
}
.

Definition 8 is well-posed for identical reasons as in the NTU paradigm.

APPENDIX D: MIMICKING ARGUMENT

We prove the following results:

LEMMA 3 (NTU mimicking argument). In the NTU paradigm, posit Assumptions 1, 2,
3 and 4. Then, for all x2 > x1 there exists a non-negative operator QX

t [v](y|x1), with
1∫
0

QX
t [v](y|x1)dy < 1, such that

NTU

V X
t [v](x2)−

NTU

V X
t [v](x1)≥

1∫
0

(
πX(y|x2)− πX(y|x1)

)
QX

t [v](y|x1)dy.

LEMMA 4 (TU mimicking argument). In the TU paradigm, posit Assumption 1, 2
and 3. Then for all x2 > x1 there exists a non-negative operator QX

t [v](y|x1), with
1∫
0

QX
t [v](y|x1)dy < 1, such that

TU

V X
t [v](x2)−

TU

V X
t [v](x1)≥

1∫
0

(
f(x2, y)− f(x1, y)

)
QX

t [v](y|x1)dy.
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D.1 Proof of Lemma 4

We introduce a preliminary Lemma.

LEMMA 5 (TU intratemporal efficiency). Under hierarchical search 1: for all x2 > x1

TU

V X
t [v](x2)≥

∞∫
t

e−ρ(τ−t)

1∫
0

TU
π

X
τ [v](y|x2)

TU

p X
t,τ [v](y|x1)dy dτ.

PROOF. Define u(t) = e−ρt

{
TU

V X
t [v](x2)−

∞∫
t
e−ρ(τ−t)

1∫
0

TU
π

X
τ [v](y|x2)

TU

p X
t,τ [v](y|x1)dy dτ

}
.

An identical construction as in Corollary 2 guarantees that for all T > t

u(T )− u(t) =−
T∫
t

e−ρτ

1∫
0

(TU
π

X
τ [v](y|x2)−

TU

V X
τ [v](x2)

)
(
λX(τ,

TU
µτ [v])(y|x2)

TU
m τ [v](x2, y)− λX(τ,

TU
µτ [v])(y|x1)

TU
m τ [v](x1, y)

)
dy dτ.

Since
TU
m τ [v](x2, y) is intratemporally efficient for given payoffs and search is hierarchi-

cal, i.e., Assumption 1 holds, it follows that u(T )−u(t)≤ 0. Then noting that u(T )≤ e−ρT

and taking the limit T →∞ establishes that u(t)≥ 0.

PROOF OF LEMMA 4. Define pXt0,t1 [v](x) =
1∫
0

TU

p X
t0,t1

[v](y|x)dy.

Define for k = 1,2, ...

[k]

MX
t [v](y|x1) =

∞∫
τ0=t

∞∫
τ1

· · ·
∞∫

τk−1

e−ρ(τk−t)αX
TU

p X
τk−1,τk

[v](y|x1)dτk (1− αX)k−1
1∏

ℓ=k−1

p
X
τℓ−1,τℓ

[v](x1)dτℓ

[k]

RX
t [v](x1, x2) =

∞∫
τ0=t

∞∫
τ1

· · ·
∞∫

τk−1

e−ρ(τk−t)
(TU

V X
τk
[v](x2)−

TU

V X
τk
[v](x1)

)
(1− αX)k

1∏
ℓ=k

p
X
τℓ−1,τℓ

[v](x1)dτℓ.

(Note that, due to the order of integration, the product counts downwards from ℓ= k−1

or ℓ= k respectively to 1.) We then prove by induction that

TU

V X
t [v](x2)−

TU

V X
t [v](x1)≥

1∫
0

(
f(x2, y)− f(x1, y)

) k∑
ℓ=1

[ℓ]

MX
t [v](y|x1)dy+

[k]

RX
t [v](x1, x2).

Base case: due to the preceding Lemma 5

TU

V X
t [v](x2)−

TU

V X
t [v](x1)≥

∞∫
t

e−ρ(τ−t)

1∫
0

(TU
π

X
τ [v](y|x2)−

TU
π

X
τ [v](y|x1)

)TU

p X
t,τ [v](y|x1)dydτ
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=

1∫
0

(
f(x2, y)−f(x1, y)

)∞∫
t

e−ρ(τ−t)αX
TU

p X
t,τ[v](y|x1)dτdy

+

∞∫
t

e−ρ(τ−t)
(TU

V X
τ [v](x2)−

TU

V X
τ [v](x1)

)
(1−αX)p

X
t,τ[v](x1)dτ

=

1∫
0

(
f(x2, y)− f(x1, y)

) [1]
MX

t [v](y|x1)dy+
[1]

RX
t [v](x1, x2).

Induction step: Suppose that

TU

V X
t [v](x2)−

TU

V X
t [v](x1)≥

1∫
0

(
f(x2, y)− f(x1, y)

) k−1∑
ℓ=1

[ℓ]

MX
t [v](y|x1)dy+

[k−1]

R X
t [v](x1, x2).

We show that
[k−1]

R X
t [v](x1, x2) ≥

1∫
0

(
f(x2, y) − f(x1, y)

)[k]
MX

t [v](y|x1)dy +
[k]

RX
t [v](x1, x2)

from which the claim follows.
To see this, it suffices to note that once more due to the preceding Lemma we have

[k−1]

R X
t [v](x1, x2) =

∞∫
τ0=t

∞∫
τ1

· · ·
∞∫

τk−2

e−ρ(τk−1−t)
(TU

V X
τk−1

[v](x2)−
TU

V X
τk−1

[v](x1)
)

(1− αX)k−1
1∏

ℓ=k−1

p
X
τℓ−1,τℓ

[v](x1)dτℓ

≥
∞∫

τ0=t

∞∫
τ1

· · ·
∞∫

τk−2

e−ρ(τk−1−t)

[ ∞∫
τk−1

e−ρ(τk−τk−1)

1∫
0

(TU
π

X
τk
[v](y|x2)−

TU
π

X
τk
[v](y|x1)

)TU

p X
τk−1,τk

[v](y|x1)dτk

]

(1− αX)k−1
1∏

ℓ=k−1

p
X
τℓ−1,τℓ

[v](x1)dτℓ

=

1∫
0

(
f(x2, y)− f(x1, y)

)[ ∞∫
τ0=t

∞∫
τ1

· · ·
∞∫

τk−1

e−ρ(τk−t)αX
TU

p X
τk−1,τk

[v](y|x1)dτk

(1− αX)k−1
1∏

ℓ=k−1

p
X
τℓ−1,τℓ

[v](x1)dτℓ

]
dy

+

∞∫
τ0=t

∞∫
τ1

· · ·
∞∫

τk−1

e−ρ(τk−t)
(TU

V X
τk
[v](x2)−

TU

V X
τk
[v](x1)

)
(1− αX)k

1∏
ℓ=k

p
X
τℓ−1,τℓ

[v](x1)dτℓ.
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Then define QX
t [v](y|x1) =

k∑
ℓ=1

[ℓ]

MX
t [v](y|x1). This is non-negative. It remains to ver-

ify that the integral over y is less than one. To see this, it suffices to note that
1∫
0

[k]

MX
t [v](y|x1)dy ≤ αX(1 − αX)k−1, whence

1∫
0

QX
t [v](y|x1)dy =

k∑
ℓ=1

1∫
0

[k]

MX
t [v](y|x1)dy ≤

k∑
ℓ=1

αX(1− αX)ℓ−1 = 1− (1− αX)k < 1.

D.2 Proof of Lemma 3

We prove a slightly stronger result than Lemma 3.43

LEMMA 6 (NTU mimicking argument). Under hierarchical search 1 and 4: for all x2 > x1

NTU

V X
t [v](x2)≥

∞∫
t

e−ρ(τ−t)

1∫
0

πX(y|x2)
NTU

p X
t,τ [v](y|x1)dy dτ.

PROOF. Define u(t) as in the proof of Lemma 5, but now consider exogenous payoffs
and the NTU value-of-search. Then for all T > t

u(T )−u(t) =−
T∫
t

e−ρτ

1∫
0

(
πX(y|x2)−

NTU

V X
τ [v](x2)

)
(
λX(τ,

NTU
µτ [v])(y|x2)

NTU
m τ [v](x2, y)︸ ︷︷ ︸

1{πY (x2|y)≥vYt (y)}1{πX(y|x2)≥vXt (x2)}

−λX(τ,
NTU
µτ [v])(y|x1)

TU
m τ [v](x1, y)

)
dy dτ

Under Assumption 4, it holds that x2, being of a superior type, is accepted by a greater
number of agents. Formally, 1{πY (x1|y) ≥ vYt (y)} = 1 ⇒ 1{πY (x2|y) ≥ vYt (y)} = 1. It
follows that the preceding is weakly smaller than

−
T∫
t

e−ρτ

1∫
0

(
πX(y|x2)−

NTU

V X
τ [v](x2)

)
1
{
πY (x1|y)≥ vYt (y)

}(
λX(τ,

TU
µτ [v])(y|x2)1

{
πX(y|x2)≥

NTU

V X
τ [v](x2)

}
− λX(τ,

TU
µτ [v])(y|x1)1

{
πX(y|x1)≥

NTU

V X
τ [v](x1)

})
dy dτ.

This expression is less than zero: First, x2’s acceptance threshold is weakly more desir-
able for x2 than whichever threshold is instituted by x1. Second, following Assumption
1, search is hierarchical. We conclude that u(t)≥ 0 by letting T converge to infinity.

43Our companion paper Bonneton and Sandmann (2023) contains another proof of this result.
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APPENDIX E: BOUNDED VARIATION: PROOF OF PROPOSITION 6

PROOF OF PROPOSITION 6 (II). Consider a generic function h(x, y) short for πX(y|x) or
f(x, y) and Lh short for Lπ or Lf . Consider an arbitrary partition of the unit interval
[0,1]: 0 = x0 < x1 < ... < xm = 1. Recall the mimicking argument, namely Lemmata 3
and 4. Those assert that in both the NTU and TU paradigm the difference in values of
search can be bounded as follows:

V X
t [v](xi)−V X

t [v](xi−1)≥
1∫

0

(
h(xi, y)− h(xi−1, y)

)
QX

t (y|xi)dy.

Further recall that match payoff or output is normalized, i.e., h(x, y) ∈ [0,1]. Then

m∑
i=1

∣∣V X
t [v](xi)−V X

t [v](xi−1)
∣∣

=−2

m∑
i=1

min
{
V X

t [v](xi)−V X
t [v](xi−1),0

}
+

m∑
i=1

(
V X

t [v](xi)−V X
t [v](xi−1)

)

≤−2

m∑
i=1

min
{ 1∫

0

(
h(xi, y)− h(xi−1, y)

)
QX

t (y|xi)dy, 0
}
+ 1

≤ 2

1∫
0

m∑
i=1

∣∣(h(xi, y)− h(xi−1, y))
∣∣QX

t (y|xi)dy+ 1≤ 2 sup
y

m∑
i=1

∣∣(h(xi, y)− h(xi−1, y)
∣∣+ 1≤ 2Lh + 1.

The last inequality is due to Assumptions 5 and 7 which posit that match payoffs and
output are of uniformly bounded total variation.

APPENDIX F: CONTINUITY

The proofs of Propositions 7 and 8 make use of the following results:

F.1 Preliminary Results

LEMMA 7 (dynamic programming). In both paradigms:

V X
t+h[v](x)−V X

t [v](x)

h
= ρV X

t+h[v](x)

− 1

h

t+h∫
t

e−ρ(τ−t)

1∫
0

(
πXτ [v](y|x)−V X

τ [v](x)
)
λX(τ,µτ [v])(y|x)mτ [v](x, y)dy dτ + o(1)

where πXτ [v](y|x) = TU
π

X
τ [v](y|x) in the TU and = πX(y|x) in the NTU paradigm.

The proof is in Appendix F.2.
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COROLLARY 2. In both paradigms: for vX
t [v](x) = e−ρtV X

t [v](x)

vX
t+h[v](x)− vX

t [v](x)

h

=− 1

h

t+h∫
t

e−ρτ

1∫
0

(
πXτ [v](y|x)−V X

τ [v](x)
)
λX(τ,µτ [v])(y|x)mτ [v](x, y)dy dτ + o(1)

where πXτ [v](y|x) = TU
π

X
τ [v](y|x) in the TU and = πX(y|x) in the NTU paradigm.

PROOF. Observe that

vX
t+h[v](x)− vX

t [v](x)

h
=

V X
t+h[v](x)−V X

t [v](x)

h
e−ρt + e−ρt e

−ρh − 1

h
V X

t+h[v](x).

Then use Lemma 7 to conclude.

Next, we require, as in the main text (see Definition 1) a notion of distance between

arbitrary match indicator functions mt(x, y). Define
∣∣∣∣m∣∣∣∣= ∞∫

0

1∫
0

1∫
0

e−t|mt(x, y)|dxdy dt.

LEMMA 8 (NTU). In the NTU paradigm, posit Assumption 4. Then for all v and t ∈ [0,∞):

for all ϵ > 0 there exists δ > 0 such that
∣∣∣∣NTU
m [v]− NTU

m [v]
∣∣∣∣< ϵ for all

∣∣∣∣v− v̄
∣∣∣∣< δ.

LEMMA 9 (TU). In the TU paradigm, posit Assumption 6. Then for all v and t ∈ [0,∞): for

all ϵ > 0 there exists δ > 0 such that
∣∣∣∣TU
m [v]− TU

m [v]
∣∣∣∣< ϵ for all

∣∣∣∣v− v̄
∣∣∣∣< δ.

Continuity of the match indicator functions implies continuity of the state at all
times.

LEMMA 10. In both the NTU and TU paradigm, posit Assumptions 2, 3, 4 and 6. Fix v.
Then for all t ∈ [0,∞): for all ϵ > 0 there exists δ > 0 such that

1∫
0

∣∣µX
t [v](x)−µX

t [v](x)
∣∣dx < ϵ for all v :

∣∣∣∣v− v̄
∣∣∣∣< δ.

F.2 Proof of Lemma 7

We only prove this in the TU paradigm, NTU follows from identical arguments.

PROOF OF LEMMA 7: TU. We make use of the dynamic programming principle:

TU

V X
t [v](x) =

t+h∫
t

e−ρ(τ−t)

1∫
0

TU
π

X
τ [v](y|x)

TU

p X
t,τ [v](y|x)dy dτ

+ e−ρh exp
{
−

t+h∫
t

1∫
0

λX(r,
TU
µr[v])(y

′|x)TU
m r[v](x, y

′)dy′dr
}TU

V X
t+h(x)[v](y|x)
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which used that
TU

p X
t,τ [v](y|x) = exp

{
−

t+h∫
t

1∫
0

λX(r,
TU
µr[v])(y

′|x)TU
m r[v](x, y

′)dy′dr
}TU

p X
t+h,τ [v](y|x).

Equivalently, we can write

TU

V X
t+h[v](x)−

TU

V X
t [v](x)

h
=−

{
1

h

t+h∫
t

e−ρ(τ−t)

1∫
0

TU
π

X
τ [v](y|x)

TU

p X
t,τ [v](y|x)dy dτ+

e−ρh−1

h

TU

V X
t+h[v](x)

+ e−ρh

exp
{
−

t+h∫
t

1∫
0

λX(r,
TU
µr[v])(y

′|x)TU
m r[v](x, y

′)dy′dr
}
− 1

h

TU

V X
t+h[v](x)

}
.

The term in the curled brackets is finite, whence
TU

V X
t+h[v](x) =

TU

V X
t [v](x) + o(1).44 This

proves Proposition 6 (i). Further note that e−ρh−1
h =−ρ+ o(1) and

TU

p X
t,τ [v](y|x) = λX(τ,

TU
µτ [v])(y|x)

TU
m τ [v](x, y) + o(1)

exp{·} − 1

h
=−

t+h∫
t

1∫
0

λX(τ,
TU
µτ [v])(y|x)

TU
m τ [v](x, y)dy dτ + o(1).

It follows that

TU

V X
t+h[v](x)−

TU

V X
t [v](x)

h
= ρ

TU

V X
t+h[v](x)

− 1

h

t+h∫
t

e−ρ(τ−t)

1∫
0

( TU
π

X
τ [v](y|x)−

TU

V X
τ [v](x)︸ ︷︷ ︸

αX
(
f(x,y)−

TU
V X

τ [v](x)−vYτ (y)
)
)
λX(τ,

TU
µτ [v])(y|x)

TU
m τ [v](x, y)dy dτ + o(1).

F.3 Proof of Lemma 8

PROOF OF LEMMA 8. Observe that
∣∣NTU
mt [v](x, y)−

NTU
mt [v](x, y)

∣∣ is smaller than∣∣1{π(y|x)≥ vXt (x)
}
−1
{
π(y|x)≥ vXt (x)

}∣∣+ ∣∣1{π(x|y)≥ vYt (y)
}
−1
{
π(x|y)≥ vYt (y)

}∣∣.
We bound the double integral of the first term: For any x observe that∣∣∣1{πX(y|x)≥ vXt (x)

}
− 1
{
πX(y|x)≥ vXt (x)

}∣∣∣
= 1
{
y : min{vXt (x), vXt (x)} ≤ πX(y|x)<max{vXt (x), vXt (x)}

}
.

44The little-o refers to the Landau notation; o(1) means that lim
h→0

o(1) = 0
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Fix some y such that πX(y|x) ∈
[
min{vXt (x), vXt (x)},max{vXt (x), vXt (x)}

]
.

Case 1: y : πX(y|x)≤ vXt (x). Denote y the greatest y such that lim
y↑y

π(y|x)≤ vXt (x). Then

πX(y|x)− πX(y|x)≤
∣∣vXt (x)− vXt (x)

∣∣.
Case 2: y : πX(y|x)≥ vXt (x). Denote y the smallest y such that lim

y↓y
π(y|x)≥ vXt (x).

πX(y|x)− πX(y|x)≤
∣∣vXt (x)− vXt (x)

∣∣.
It follows that

1∫
0

1∫
0

1
{
y : min{vXt (x), vXt (x)} ≤ πX(y|x)≤max{vXt (x), vXt (x)}

}
dy dx

≤
∫

Z∆

1
{
y : min{vXt (x), vXt (x)} ≤ πX(y|x)≤max{vXt (x), vXt (x)}

}
d(x, y) +C∆α

≤
1∫

0

1

∆

∣∣vXt (x)− vXt (x)
∣∣dx+C∆α,

and we can similarly bound

1∫
0

1∫
0

1
{
x : min{vYt (y), vYt (y)} ≤ πY (x|y)≤max{vYt (y), vYt (y)}

}
dy dx

≤
1∫

0

1

∆

∣∣vYt (y)− vYt (y)
∣∣dy+C∆α.

In effect, we can conclude that

∣∣∣∣NTU
m [v]−NTU

m [v]
∣∣∣∣≤ 1

∆

∞∫
0

e−t

{ 1∫
0

∣∣vXt (x)− vXt (x)
∣∣dx+ 1∫

0

∣∣vYt (y)− vYt (y)
∣∣dy+ 2C∆α

}
dt

≤ 2

∆

∣∣∣∣v−v∣∣∣∣+ 2C∆α.

Then for any ϵ > 0 let ∆ : 2C∆α < ϵ
2 . And let δ : 2

∆δ <
ϵ
2 .

F.4 Proof of Lemma 9

PROOF OF LEMMA 9. Step 1: Observe that for all v∣∣TU
mt[v](x, y)−

TU
mt[v](x, y)

∣∣= ∣∣1{f(x, y)≥ vXt (x) + vYt (y)
}
− 1
{
f(x, y)≥ vXt (x) + vY (y)

}∣∣
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= 1
{
y : min

{
vXt (x) + vYt (y), vXt (x) + vYt (y)

}
≤ f(x, y)<max

{
vXt (x) + vYt (y), vXt (x) + vYt (y)

}}
< 1
{
(x, y) :

∣∣f(x, y)− vXt (x)− vYt (y)
∣∣< 2max

{∣∣vXt (x)− vXt (x)
∣∣, ∣∣vYt (y)− vYt (y)

∣∣}}.
Step 2: Denote St(x, y) = f(x, y)− vXt (x)− vYt (y) and define

D>∆,δ
t (x) =

{
y : |St(x, y)|< δ ∧ (x, y) ∈Z>∆

}
D<−∆,δ

t (x) =
{
y : |St(x, y)|< δ ∧ (x, y) ∈Z<−∆

}
,

where Z>∆ and Z<−∆ are as defined in Assumption 6.
Then consider pairs (x, y), (x′, y), (x, y′), (x′, y′) in Z>∆ (an analogous construction

applies for Z<−∆). The triangular inequality implies that

|St(x
′, y′)| ≥ |St(x, y)−St(x

′, y)−St(x, y
′)+St(x

′, y′)|−|St(x, y)−St(x
′, y)−St(x, y

′)| ≥∆−3δ > δ

if ∆> 4δ. In effect, for such chosen δ,∆ the set D>∆,δ
t (x) ∩D>∆,δ

t (x′) contains at most
one point y for all x,x′.

Step 3: We claim that
∫

Z>∆

1
{
|St(x, y)|< δ

}
d(x, y) =

1∫
0

∫
D>∆,δ

t

dydx −→
δ→0 0.45 An anal-

ogous construction applies for Z<−∆. If not, for some k there are infinitely many

{xn} with
∫

D>∆,δ
t (x)

dy > 1
k , whereupon

∞∑
n=1

( ∫
D>∆,δ

t (xn)

dy
)
= ∞. Since, for δ < ∆/4,

D>∆,δ
t (xi) ∩ D>∆,δ

t (xj) ≡ yij contains at most one point, N>∆,δ
t = ∪∞

i,j=1yi,j is count-

able and so
∫

N>∆,δ
t

dy = 0. Also, D>∆,δ
t (xi) \N>∆,δ

t and D>∆,δ
t \N>∆,δ

t are disjoint for all

i ̸= j. This gives the absurd assertion that

1≥
∫

⋃∞
n=1 D

>∆,δ
t (xn)\N>∆,δ

t

dy =

∞∑
n=1

∫
D>∆,δ

t (xn)\N>∆,δ
t

dy =

∞∑
n=1

∫
D>∆,δ

t (xn)

dy =∞.

Step 4: Pick arbitrary ϵ > 0. Let T > 0 so that (1− e−T )< ϵ
4 . And let ∆> 0 : C∆αT ≤

ϵ
4 . Then due to Step 1 and Assumption 6 it holds that∣∣∣∣TU
m [v]− TU

m [v]
∣∣∣∣

<

T∫
0

∫
Z>∆

1
{
(x, y) :

∣∣St(x, y)
∣∣< 2max

{∣∣vXt (x)− vXt (x)
∣∣, ∣∣vYt (y)− vYt (y)

∣∣}}d(x, y)dt
+

T∫
0

∫
Z<−∆

1
{
(x, y) :

∣∣St(x, y)
∣∣< 2max

{∣∣vXt (x)− vXt (x)
∣∣, ∣∣vYt (y)− vYt (y)

∣∣}}d(x, y)dt+ ϵ

2
.

45We follow Shimer and Smith (2000), Lemma 3, Step 1, second paragraph.
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We then twice apply Egorov’s theorem. First, due to Step 3, there exists δ1 > 0 with 4δ1 <

∆ so that for all δ′ < δ1 the set of t ∈ [0, T ] for which∫
Z>∆

1
{
|St(x, y)|< δ′

}
d(x, y) +

∫
Z<−∆

1
{
|St(x, y)|< δ′

}
d(x, y)≥ 1

T

ϵ

4

has mass at most ϵ
8 ≥ 0. Second, we choose δ2 > 0 so that for all δ′ < δ2 the set of (t, x, y) ∈

[0, T ]× [0,1]× [0,1] for which∣∣vXt (x)− vXt (x)
∣∣, ∣∣vYt (y)− vYt (y)

∣∣> δ′

has mass at most ϵ
8 . In effect, for δ⋆ =min{δ1, δ2} it holds that

∣∣∣∣TU
m [v]− TU

m [v]
∣∣∣∣< ϵ for all

v :
∣∣∣∣v− v

∣∣∣∣< δ∗ as claimed.

F.5 Proof of Lemma 10

PROOF OF LEMMA 10. Step 1: Manipulating (1) gives

µX
t [v](x)−µX

t [v](x) =

t∫
0

{
µX
τ [v](x)

1∫
0

λX(τ,µτ [v])(y|x)mτ [v](x, y)dy

−µX
τ [v](x)

1∫
0

λX(τ,µτ [v])(y|x)mτ [v](x, y)dy+ ηX(τ,µτ [v])(x)− ηX(τ,µτ [v])(x)

}
dτ

=

t∫
0

{(
µX
τ [v](x)−µX

τ [v](x)
) 1∫
0

λX(τ,µτ [v])(y|x)mτ [v](x, y)dy

+µX
τ [v](x)

1∫
0

(
λX(τ,µτ [v])(y|x)− λX(τ,µτ [v])(y|x)

)
mτ [v](x, y)dy

+µX
τ [v](x)

1∫
0

λX(τ,µτ [v])(y|x)
(
mτ [v](x, y)−mτ [v](x, y)

)
dy+ηX(τ,µτ [v])(x)−ηX(τ,µτ [v])(x)

}
dτ.

Using Assumptions 2 and 3 we obtain the following upper bound:

1∫
0

∣∣µX
t [v](x)−µX

t [v](x)
∣∣dx≤ (1 + µt

)
Lλ

t∫
0

1∫
0

∣∣µX
τ [v](x)−µX

τ [v](x)
∣∣dxdτ

+ µtL
λ

t∫
0

N(µτ [v],µτ [v])dτ + µt(1 + µt)L
λ

t∫
0

1∫
0

1∫
0

∣∣mτ [v](x, y)−mτ [v](x, y)
∣∣dy dxdτ

+Lη

t∫
0

N(µτ [v],µτ [v])dτ. (⋆)
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Step 2: The preceding Lemmata 8 and 9 imply that in both paradigms for all ξ > 0 (to be
determined) there exists δ > 0 such that for all v : ||v− v||< δ:

t∫
0

1∫
0

1∫
0

∣∣mτ [v](x, y)−mτ [v](x, y)
∣∣dy dxdτ < ξ. (⋆⋆)

Step 3: We show that ∀ϵ > 0 ∃δ > 0 such that N(µt[v],µt[v])< ϵ ∀v : ||v− v||< δ.

Indeed, inequalities (⋆) and (⋆⋆) jointly imply that

N(µt[v],µt[v])≤
((
1 + µt

)
Lλ + µtL

λ +Lη
)︸ ︷︷ ︸

≡K1

t∫
0

N(µτ [v],µτ [v])dτ + µt
(
1 + µt

)
Lλ︸ ︷︷ ︸

≡K2

ξ

for all v : ||v− v||< δ. And an application of Grönwall’s inequality gives N(µt[v],µt[v])≤
K2ξe

K1t.

Then to satisfy the ϵ− δ argument, choose ξ ≡ ϵ
K2
e−K1t.

Proof of Proposition 7

PROOF OF PROPOSITION 7. Pick h such that 1/h ∈ N. Then, due to Corollary 2, it holds
that

∣∣V X
t0 [v](x)−V X

t0 [v](x)
∣∣

≤ eρt0

{
e−ρt0

∣∣V X
t0 [v](x)−V X

t0 [v](x)
∣∣− e−ρt1

∣∣V X
t1 [v](x)−V X

t1 [v](x)
∣∣}+ e−ρ(t1−t0)

= eρt0h

1
h−1∑
n=0

{
e−ρ(t0+nh)

∣∣V X
t0+nh[v](x)−V X

t0+nh[v](x)
∣∣

h

− e−ρ(t0+(n+1)h)

∣∣V X
t0+(n+1)h[v](x)−V X

t0+(n+1)h[v](x)
∣∣

h

}
+ e−ρ(t1−t0)

= eρt0h

1
h−1∑
n=0

{∣∣vX
t0+nh[v](x)− vX

t0+nh[v](x)
∣∣

h
−

∣∣vX
t0+(n+1)h[v](x)− vX

t0+(n+1)h[v](x)
∣∣

h

}
+e−ρ(t1−t0)

≤ eρt0h

1
h−1∑
n=0

∣∣∣vX
t0+(n+1)h[v](x)− vX

t0+nh[v](x)

h
−

vX
t0+(n+1)h[v](x)− vX

t0+nh[v](x)

h

∣∣∣+ e−ρ(t1−t0)

≤ eρt0h

1
h−1∑
n=0

∣∣∣∣∣ 1h
t0+(n+1)h∫
t0+nh

e−ρt

1∫
0

{(
πX(y|x)−V X

t [v](x)
)
λX(t,µt[v])(y|x)mt[v](x, y)

−
(
πX(y|x)−V X

t [v](x)
)
λX(t,µt[v])(y|x)mt[v](x, y)

}
dy dt

∣∣∣∣∣+ o(1) + e−ρ(t1−t0)
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= eρt0

∣∣∣∣∣
t1∫

t0

e−ρt

1∫
0

{(
πX(y|x)−V X

t [v](x)
)
λX(t,µt[v])(y|x)mt[v](x, y)

−
(
πX(y|x)−V X

t [v](x)
)
λX(t,µt[v])(y|x)mt[v](x, y)

}
dy dt

∣∣∣∣∣+ e−ρ(t1−t0).

Next, recall the definition ofmt[v](x, y). In the NTU paradigm the preceding term is

= eρt0

∣∣∣∣∣
t1∫

t0

e−ρt

1∫
0

{(
πX(y|x)−V X

t [v](x)
)
λX(t,µt[v])(y|x)

(
1
{
πY (x|y)≥ vYt (y)

}
− 1
{
πY (x|y)≥ vYt (y)

})
1
{
πX(y|x)≥ vXt (x)

}
+

[(
πX(y|x)−V X

t [v](x)
)
λX(t,µt[v])(y|x)1

{
πY (x|y)≥ vYt (y)

}
1
{
πX(y|x)≥ vXt (x)

}
−
(
πX(y|x)−V X

t [v](x)
)
λX(t,µt[v])(y|x)1

{
πY (x|y)≥ vYt (y)

}
1
{
πX(y|x)≥ vXt (x)

}]}
dy dt

∣∣∣∣∣
+ e−ρ(t1−t0)

≤ e−ρ(t1−t0) +

t1∫
t0

e−ρ(t−t0)

1∫
0

{
(1 + µt)L

λ
∣∣∣1{πY (x|y)≥ vYt (y)

}
− 1
{
πY (x|y)≥ vYt (y)

}∣∣∣
+

∣∣∣∣∣[πX(y|x)−V X
t [v](x)

]
+
λX(t,µt[v])(y|x)−

[
πX(y|x)−V X

t [v](x)
]
+
λX(t,µt[v])(y|x)

∣∣∣∣∣
}
dy dt

≤ e−ρ(t1−t0) + (1+ µt1)L
λ

t1∫
t0

1∫
0

∣∣∣1{πY (x|y)≥ vYt (y)
}
− 1
{
πY (x|y)≥ vYt (y)

}∣∣∣dy dt
+ (1+ µt1)L

λ

t1∫
t0

1∫
0

∣∣∣∣∣[πX(y|x)−V X
t [v](x)

]
+
−
[
πX(y|x)−V X

t [v](x)
]
+

∣∣∣∣∣dy dt
+

t1∫
t0

1∫
0

∣∣∣λX(t,µt[v])(y|x)− λX(t,µt[v])(y|x)
∣∣∣dy dt

≤ (1 + µt1)L
λ

t1∫
t0

1∫
0

∣∣∣1{πY (x|y)≥ vYt (y)
}
− 1
{
πY (x|y)≥ vYt (y)

}∣∣∣dy dt+ e−ρ(t1−t0)

+ (1+ µt1)L
λ

t1∫
t0

∣∣V X
t [v](x)−V X

t [v](x)
∣∣dt+Lλ

t1∫
t0

N(µt[v],µt[v])dt
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where we have made use of Assumption 2. By integrating over all x ∈ [0,1], it follows that
1∫
0

∣∣V X
t0 [v](x)−V X

t0 [v](x)
∣∣dx is bounded by

(1 + µt1)L
λ

t1∫
t0

1∫
0

1∫
0

∣∣∣1{πY (x|y)≥ vYt (y)
}
− 1
{
πY (x|y)≥ vYt (y)

}∣∣∣dxdy dt+ e−ρ(t1−t0)

+ (1+ µt1)L
λ

t1∫
t0

1∫
0

∣∣V X
t [v](x)−V X

t [v](x)
∣∣dxdt+Lλ

t1∫
t0

N(µt[v],µt[v])dt.

To conclude, fix some ξ (yet to be determined). Let t1 be the smallest time such that
e−ρ(t1−t0) < ξ. The proof of Lemma 8 implies that there exists δ1 > 0 such that for all
v : ||v− v||< δ1

t1∫
t0

1∫
0

1∫
0

∣∣∣1{πY (x|y)≥ vYt (y)
}
− 1
{
πY (x|y)≥ vYt (y)

}∣∣∣dxdy dt < ξ.

And Lemma 10 implies that there exists δ2 > 0 such that
t1∫
t0

N(µt[v],µt[v])dt < ξ for all

v : ||v− v||< δ2 Then set δ =min{δ1, δ2}. It follows that for all v : ||v− v||< δ

1∫
0

∣∣V X
t0 [v](x)−V X

t0 [v](x)
∣∣dx≤ (1 + µt1)L

λ︸ ︷︷ ︸
≡K1

t1∫
t0

1∫
0

∣∣V X
t [v](x)−V X

t [v](x)
∣∣dxdt+ ((2 + µt1)L

λ + 1
)︸ ︷︷ ︸

≡K2

ξ.

And an application of Grönwall’s inequality gives
1∫
0

∣∣V X
t [v](x)−V X

t [v](x)
∣∣dx≤K2ξe

K1(t1−t0).

Then to satisfy the ϵ− δ argument, choose ξ ≡ ϵ
K2
e−K1(t1−t0).

F.6 Proof of Proposition 8

PROOF OF PROPOSITION 8. Pick h such that 1/h ∈N. Then (details for the first inequality
that is not specific to the TU paradigm are given in the proof of Proposition 7)

∣∣V X
t0 [v](x)−V X

t0 [v](x)
∣∣≤ eρt0

∣∣∣∣∣
t1∫

t0

e−ρt

1∫
0

{(
πXt [v](y|x)−V X

t [v](x)
)
λX(t,µt[v])(y|x)mt[v](x, y)

−
(
πXt [v](y|x)−V X

t [v](x)
)
λX(t,µt[v])(y|x)mt[v](x, y)

}
dy dt

∣∣∣∣∣+ e−ρ(t1−t0)

≤
t1∫

t0

1∫
0

∣∣∣∣∣[πXt [v](y|x)−V X
t [v](x)

]
+
λX(t,µt[v])(y|x)
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−
[
πXt [v](y|x)−V X

t [v](x)
]
+
λX(t,µt[v])(y|x)

∣∣∣∣∣dy dt+ e−ρ(t1−t0)

= αX

t1∫
t0

1∫
0

{∣∣∣[f(x, y)− vYt (y)−V X
t [v](x)

]
+
−
[
f(x, y)− vYt (y)−V X

t [v](x)
]
+

∣∣∣λX(t,µt[v])(y|x)

+
∣∣∣λX(t,µt[v])(y|x)− λX(t,µt[v])(y|x)

∣∣∣}dy dt+ e−ρ(t1−t0)

≤ αX(1 + µt1)L
λ

t1∫
t0

1∫
0

∣∣∣(vYt (y)−V X
t [v](x)

)
−
(
vYt (y)−V X

t [v](x)
)∣∣∣dy dt

+ αXLλ

t1∫
t0

N(µt[v],µt[v])dt+ e−ρ(t1−t0)

≤ αX(1 + µt1)L
λ

t1∫
t0

1∫
0

∣∣vYt (y)− vYt (y)
∣∣dy dt+ αX(1 + µt1)L

λ

t1∫
t0

∣∣V X
t [v](x)−V X

t [v](x)
∣∣dt

+ αXLλ

t1∫
t0

N(µt[v],µt[v])dt+ e−ρ(t1−t0).

To conclude, fix some ξ (yet to be determined). Let t1 be the smallest time such that
e−ρ(t1−t0) < ξ. To bound the first term, set δ1 = e−t1ξ. Lemma 10 implies that there

exists δ2 > 0 such for all v : ||v− v||< δ2:
t1∫
t0

N(µt[v],µt[v])dt < ξ.

Then set δ =min{δ1, δ2}. It follows that for all v : ||v− v||< δ

∣∣V X
t0 [v](x)−V X

t0 [v](x)
∣∣≤ αX(1 + µt1)L

λ︸ ︷︷ ︸
≡K1

t1∫
t0

∣∣V X
t [v](x)−V X

t [v](x)
∣∣dt+ αX

(
(2 + µt1)L

λ + 1
)︸ ︷︷ ︸

≡K2

ξ.

And an application of Grönwall’s inequality gives
∣∣V X

t0 [v](x)−V X
t0 [v](x)

∣∣≤K2ξe
K1(t1−t0).

Then to satisfy the ϵ− δ argument, choose ξ ≡ ϵ
K2
e−K1(t1−t0).

APPENDIX G: DISCUSSION: OMITTED PROOFS

PROOF OF REMARK 3. Careful inspection of the proof of Lemma 4 reveals that under
anonymous meeting rates, the following inequalities hold irrespective of the order of
types for any two types x1, x2:

1∫
0

(
f(x2, y)−f(x1, y)

)
QX

t [v](y|x2)dy≥
TU

V X
t [v](x2)−

TU

V X
t [v](x1)≥

1∫
0

(
f(x2, y)−f(x1, y)

)
QX

t [v](y|x1)dy.
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In light of continuity of x 7→ f(x, y), the difference in values-of-search then tends to zero
as x2 → x1.

PROOF OF REMARK 4. Fix types x and x− δ with δ > 0. We show that:

V X
t (x− δ)→ V X

t (x) as δ ↓ 0.

(The mapping x 7→ V X
t (x) is right-continuous because, by construction, agents ac-

cept one another if indifferent. Given our continuity assumptions, this readily implies
lim
δ↓0

V X
t (x+ δ) = V X

t (x).)

Step 1: We construct an individual type x − δ matching rate whereby, at all times,
a single agent of type x − δ accepts a match with type y if a type x individual ac-
cepts a match with type y, whereas all other agents of type x − δ continue to best-
respond to their match opportunities. Since individual deviations from match accep-
tance rules do not change the evolution of the search pool, meeting rates remain unaf-
fected. Individual type x− δ matches with type y thus occur at rate λXt (y|x− δ)1{πY (x−
δ|y)≥ V Y

t (y)}1{πX(y|x)≥ V X
t (x)}. Considering hierarchical search, whereby λXt (y|x−

δ) ≤ λXt (y|x), and vertically differentiated types, whereby 1{πY (x − δ|y) ≥ V Y
t (y)} ≤

1{πY (x|y) ≥ V Y
t (y)}, this matching rate is weakly lower than that of x. We then intro-

duce the object PX
t (y|x−δ), which, analogous to the construction in the proof of Lemma

3, captures the resulting discounted probability of matching for type x− δ. In particular,

the discounted probability of matching with some type less than ȳ is
ȳ∫
0

PX
t (y|x− δ)dy.

Step 2: By revealed preferences, the value-of-search for type x − δ for δ ≥ 0 must
weakly exceed the expected discounted match payoff when following the constructed
matching rate. Thus:

V X
t (x− δ)≥

1∫
0

πX(y|x− δ)PX
t (y|x− δ)dy

=

1∫
0

πX(y|x− δ)QX
t (y|x)dy+

1∫
0

πX(y|x− δ)(PX
t (y|x− δ)−QX

t (y|x))dy,

where QX
t (y|x) is as defined in Lemma 3.

Step 3: We show that PX
t (y|x − δ) → QX

t (y|x) as δ → 0. First, note that by as-
sumption, meeting rates satisfy λXt (y|x − δ) → λXt (y|x) as δ → 0. Additionally, since
y 7→ xt(y) is assumed to be increasing, the match opportunities for type x−δ, as given by
{y : πY (x− δ|y)≥ Vt(y)}, almost surely coincide with the interval [0, inf y : xt(y)≥ x− δ],
and inf{y : xt(y) ≥ x − δ} → inf{y : xt(y) ≥ x} as δ tends to zero. Consequently, the in-
dividual type x− δ matching rate converges to type x’s matching rate, thereby implying
the convergence of discounted match probabilities.
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Step 4: We deduce from the preceding that V X
t (x) − V X

t (x − δ) is bounded from
above by

1∫
0

(
πX(y|x)− πX(y|x− δ)

)
QX

t (y|x)dy+
1∫

0

πX(y|x− δ)(PX
t (y|x− δ)−QX

t (y|x))dy.

Moreover, due to the mimicking argument (Lemma 3), V X
t (x)− V X

t (x− δ) is bounded
from below by

1∫
0

(
πX(y|x)− πX(y|x− δ)

)
QX

t (y|x− δ)dy.

Then the continuity of x 7→ πX(y|x) and the convergence of PX
t (y|x− δ)→QX

t (y|x) as
δ→ 0 ensure that both bounds tend to zero as δ→ 0.
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